
Stylistic Models for
Authorial Recreation:

A Comparison of Transformer-based
Language Models for Author-Styled

Latin Text Generation

Rufus Behr

A dissertation submitted in partial fulfilment

of the requirements for the degree of

Bachelor of Science
of the

University of Aberdeen.

Department of Computing Science

2022

Declaration

No portion of the work contained in this document has been submitted in support of an application

for a degree or qualification of this or any other university or other institution of learning. All

verbatim extracts have been distinguished by quotation marks, and all sources of information have

been specifically acknowledged.

Signed: Rufus Behr

Date: 2022

Abstract

It is nearly impossible for text to be devoid of its author’s style. Whether we like it or not, our

fingerprints are left on the sentences that we construct. And, whilst stylistic text transfer (the

process of adjusting text for stylistic elements like politeness, casualness, etc.) is a fairly well-

trodden research field, author-styled generation is not. This dissertation, as far as the author is

aware, is the first research project that aims to generate author-styled Latin text. It therefore

contributes to the research fields of author-styled text generation and low-resource languages.

Acknowledgements

Firstly, I would like to thank my advisor Dr. Ehud Reiter for allowing me to undertake this project

and for all the support and insight he provided throughout it. I would also like to thank Dr. Sam

Newington for putting me in contact with Latin experts that were able to evaluate my project.

Lastly, I would like to thank my family for their unwavering support throughout my degree.

Contents

1 Introduction 9
1.1 Motivation . 9

1.2 Objectives . 10

2 Background and Related Work 12
2.1 Problem Domain . 12

2.1.1 Lingua Latina . 12

2.1.2 Latin Grammar . 13

2.1.3 Style in Latin . 13

2.1.4 Latin Composition . 13

2.2 Related Work . 14

2.3 Background . 15

2.3.1 Transformers . 15

2.3.2 BERT . 15

2.3.2.1 Latin BERT . 16

2.3.3 Large Language Models . 16

2.3.3.1 GPT-3 . 17

2.3.3.2 LLaMA . 18

2.4 Prior Work: Latin Authorship . 18

2.4.1 The Dataset . 18

2.4.2 Results . 19

3 Design & Methodology 20
3.1 Requirements . 20

3.1.1 Functional Requirements . 20

3.1.2 Nonfunctional Requirements . 20

3.1.2.1 Code Quality . 20

3.2 Design Prerequisites . 21

3.2.1 Dataset . 21

3.2.2 Author Selection . 22

3.3 Latin BERT . 22

3.4 Transformer . 25

3.5 ChatGPT . 26

3.6 LLaMA . 27

CONTENTS 6

3.6.1 Alpaca . 28

3.6.2 LoRA . 28

3.6.3 Alpaca with LoRA . 29

3.6.4 Approach for Latin . 29

4 Implementation 31
4.1 Development . 31

4.1.1 Language & Libraries . 31

4.1.2 Cloud Computing . 31

4.2 Data . 32

4.3 Models . 32

4.3.1 LatinBERT . 33

4.3.2 Transformers . 34

4.3.3 ChatGPT . 35

4.3.4 LLaMA . 35

4.3.4.1 Weights . 35

4.3.4.2 Latin Approach Inspired by Alpaca LoRA 35

5 Evaluation 36
5.1 Experimental Design . 36

5.2 Survey Results . 37

6 Discussion, Conclusion, and Future Work 39
6.1 Discussion . 39

6.2 Future Work . 40

6.3 Conclusion . 40

A User Manual 45
A.1 Requirements . 45

A.2 Create Environment and Install Dependencies 45

A.3 Running the Project . 46

B Maintenance Manual 48
B.1 Setting-up the Development Environment . 48

B.1.1 Requirements . 48

B.1.2 Running the Project . 49

B.2 Summary of Files . 49

B.3 Direction for Improvement . 50

C Generated Output 52
C.1 Survey Text Generated . 52

C.2 LatinBERT Initial Analysis . 53

List of Tables

1.1 Generated text in the style of Caesar . 11

3.1 Breakdown of Sources for the Unified Dataset 21

3.2 LatinBERT Looping in generation with the last fourteen words from the context

provided . 24

3.3 Models after being prompted "Instruction: Tell me about alpacas."

- Table Source: Alpaca-LoRA’s github (52) . 29

4.1 Data available per author . 32

5.1 Results from the Evaluation Survey . 37

B.1 A Summary of all the Files . 50

C.1 The generated text included in the Survey . 53

C.2 Totality of LatinBERT initial generation with the last fourteen context words pro-

vided . 57

List of Figures

3.1 Top 25 extant authors in the Dataset . 23

3.2 The Transformer Architecture - Source: Vaswani et al. (49) 25

3.3 First Prompt for ChatGPT . 26

3.4 Prompt for ChatGPT to pretend it’s a prospective Classics student 27

3.5 Final Prompt Template for ChatGPT . 27

3.6 LoRA in action - Source: Hu et al. (24) . 28

4.1 The code used to prepare the data for LatinBERT 33

4.2 The code used to generate new Latin text using LatinBERT 33

4.3 The code used to generate new Latin text using the Transformer 34

Chapter 1

Introduction

Style is implicit in writing and can reveal a lot of information about its author. Humans are

generally capable of discerning style in the writing of one another; this is particularly true for

teachers, who know their students’ writing intimately and can detect if a student has presented

plagiarised work as their own. The task proves to be more difficult for computers, however, since

style is subjective and not well-defined. To address this difficulty there are metrics — the number

of dependent clauses, vocabulary usage, use of punctuation, etc. — that can be used by computers

to try to statistically determine the style of a given author.

This statistical analysis of style in text is referred to as Stylometry (14) and determining the

author based on the style of given text is known as authorship attribution. Stylometry and au-

thorship attribution are an active area of research — particularly as it pertains to detecting contract

cheating or more recently plagiarism through Large Language Models like ChatGPT1 (40; 25; 29).

In addition to identifying fraudulent work, this research has also been used to try to determine

authorship of Shakespeare (26), to help improve spam filters (43), and to estimate emotional intel-

ligence (17).

Whilst identifying style can prove tricky for computers, it is even harder to create new text in

a desired style of an author. There has been plenty of work on text style transfer, but this usually

refers to the idea of shifting the tone of the text (27).

This paper investigates the effectiveness of transformer-based language models to generate

author-styled text in Latin, a low-resource language2. It compares the generated output of specifi-

cally fine-tuned models with the output of Large Language Models (for the purposes of this paper

a Large Language Model is one with billions of parameters)3.

1.1 Motivation
Despite the recent rapid acceleration and accompanying excitement around Large Language Mod-

els and text generation, the research field of author-styled text generation is still surprisingly

sparse. Moreover, Latin and other low-resource languages as a whole are more difficult to work

with for Natural Language tasks and are consequently less widely studied (34). This work, there-

fore, contributes both to the research of low-resource languages as well as author-styled text.

1https://help.openai.com/en/articles/6783457-what-is-chatgpt
2Low-resource langauges refer to languages that have less data available and are therefore often studied less than

their high-resource counterparts.
3It is worth noting that other definitions of Large Language Models will be far below this parameter number, but,

given that ChatGPT, one of the models used, has 175 billion parameters (20), a model consisting of ≈ 110 million, such
as BERT’s base model (22), is comparatively not so large.

1.2. OBJECTIVES 10

But why Latin? In the early 20th century, prospective Classics students for Oxford University

were required to compose text in the style of particular authors (Cicero, Catullus, etc.) as part

of their entrance examination4. Taking inspiration from the Oxford Latin Composition test, this

project aims to similarly generate Latin text in the style of given authors but doing so computa-

tionally. An example of generated text in the style of Caesar can be seen in Table 1.1.

1.2 Objectives
This project has are two objectives. The primary objective is to generate author-styled Latin text

using three types of models: a pre-existing Latin model, a newly built and trained Latin model,

and Large Language Models. The secondary objective is then to compare the effectiveness of each

of these models for this task. Consequently, four supporting objectives naturally arise:

1. Obtain a relevant corpus
Whilst this might be the easiest objective listed, given that a trained model can only be as

good as the data it was trained on, it is also perhaps the most crucial — particularly, with

regard to the decisions on how to preprocess the data.

2. Train the models
After obtaining the relevant corpus, the next objective becomes using the dataset to fine-tune

a pre-existing model and train a new model on the text of particular authors.

3. Generate Text
After the models have been trained, a seed text — i.e. the text that will start all of the

generated author-styled texts — must be carefully selected. At which point, the models can

generate the continuation of the texts in their attempted authorial style.

4. Evaluate the outputs of the different models
After the different models have created text, it remains to evaluate their attempted author-

styled outputs, both individually and comparatively.

If these supporting objectives are achieved, then the second objective will have been achieved, yet

the primary objective of generating author-styled Latin text will be dependent on the results of the

evaluation.

4This was conveyed to me by Dr. John Behr
5Approximate translation provided by Google Translate: https://translate.google.co.uk/

1.2. OBJECTIVES 11

Generated Text Examples
Seed Text Model Generated Caesar Translation5

Olim sapiens vir
nomine Rufo erat

Olim sapiens vir nomine Rufo
erat, qui multos annos in Gal-
lia commoratus est. Ille tempus
suum in studiis et litteris con-
sumebat, sed postea ad militiam
se contulit et ad Caesarem venit.

Once upon a time there was a
wise man named Rufus, who
lived many years in Gaul. He
spent his time in studies and lit-
erature, but afterwards he turned
to the military and came to Cae-
sar.

Puer calceos habet. Puer calceos habet, non utilem
solum sed etiam formosum.
Quotidie in via ambulat, gau-
dens et alacriter procedens. Non
pauci obvia mirantur, claman-
tque "Ecce puer, puer calcea-
tus!"

The boy has shoes, not only use-
ful but also beautiful. Every day
he walks on the road, rejoicing
and proceeding with vigor. Not
a few are astonished at the sight,
and cry out, "Behold a child, a
child with shoes!"

Table 1.1: Generated text in the style of Caesar

Chapter 2

Background and Related Work

This chapter explains the domain of this particular problem, details some of the literature that will

be pertinent for this project, and explains prior work of mine that this project builds upon.

2.1 Problem Domain

Before approaching the problem of author-styled generation, given that this project focuses on

Latin generation, it is important to first have an understanding of the language and the relevant

background information for this problem.

2.1.1 Lingua Latina

Historically, Latin was a language spoken and written within the Roman Empire and had primary

usage from the 7th century BC through the 18th century AD, where its later usage was primarily

for academic texts (7) 1. Due to the long-running nature of the language, it has naturally evolved

over time resulting in eight main versions: Old Latin, that is Latin predating ≈75 BC; Classical

Latin, which spans from the end of Old Latin until the 3rd century AD, was what the educated

Romans would have learnt and is mostly the Latin taught within schools today; Vulgar Latin or

"common Latin" lasted until the 7th century AD, and refers to Latin as it was usually spoken within

the Roman Empire (in contrast to the formality of written Latin); Late Latin is the written counter-

part to vulgar Latin after the Classical Latin period; Medieval Latin then evolved from Late Latin

during the Medieval period at which point spoken Latin was nonexistent for everyday life (outside

of the Church); Renaissance Latin, much like Medieval Latin before it, was the Latin of the time

it existed, whose study was emphasised by the humanist movement, and attempted to revert some

of the evolutions of Vulgar and Medieval Latin back to Classical Latin; Ecclesiastical Latin began

with the introduction of Latin in the Church and in some form or another persists to today, appear-

ing within Church-related documents or services; and Contemporary Latin refers to Latin after the

19th century, for, whilst Latin is a ‘dead’language, new written Latin and translations of popular

contemporary literature, although not very common, exist (7; 41; 11; 3; 15; 6; 10; 5; 4). The Latin

that this project primarily seeks to investigate is Classical Latin because the pre-eminent authors

that the Oxford Composition Test — and therefore this project — focus on are from that age of

Latin.

1This ignores Latin within the Catholic Church, which effectively persisted until Vatican II (20th century).

2.1. PROBLEM DOMAIN 13

2.1.2 Latin Grammar

I will now provide a brief overview of the grammar of Latin, particularly within the Classical Latin

time period.

Because Latin is an inflected language (7) , the forms of words convey their meaning within

a sentence. For instance, the ending of a noun will indicate its case and its number, where the case

can be one of six cases that determine its usage (e.g. subject, direct object, direct address, etc.)

and the number can be one of two (singular or plural). Nouns also have genders that are intrinsic

to the noun itself. Adjectives must then follow the same functional form of the noun that it agrees

with (i.e. an adjective agreeing with a singular neuter subject will also be singular neuter and in

the same case as the noun) (16).

Verbs similarly have conjugated forms that explicitly make clear their information (e.g. plu-

rality, tense, mood, etc.) (16).

Although Latin often follows subject-object-verb word order, as a consequence of its inflected

nature, the word order is not as strict as other languages, but a difference in word order can be used

to place emphasis (16).

2.1.3 Style in Latin

Since the project aims to simulate the style of particular authors, it makes sense to briefly overview

some stylistic features in Latin texts.

In Latin as in English, there are a variety of techniques employable by the omission or rep-

etition of words whether that is through asyndeton and polysyndeton (omitting or repeated use

of conjunctions to affect the speed of the text), through repetition of words or phrases in sen-

tences (or lines in poetry) such as anaphora, or through repetition of letters for alliteration (53; P).

Unlike English, however, because Latin has declinable words, there are also stylistic flairs that

rely on syntactical patterns — whether through repetition of syntax, as in parallelism, or through

intentional inversion of it, as in chiasmus (53).

Moreover, counting syntactic features for authorship attribution is as effective for Latin au-

thors as it is for English authors. In Clarence Linton Meader’s 1905 work Types of Sentence

Structure in Latin Prose Writers, he explains that mechanical analysis of the formation of sen-

tences in terms of their clauses and other syntactic features can prove very effective at determining

Latin writers of rhetoric — he mentions Cicero, in particular (35). The style of writing in prose

will also often be determined by the subject matter at hand; Nutting (37) reviewing J. Arbuthnot

Nairn’s Latin Prose Composition, specifies that the "chief divisions of Latin prose style ... are (a)

Oratory, (b) Narrative, (c) Letters, (d) Philosophy, [and] (e) Criticism of Arts and Letters".

Conversely, whilst subject matter might play a role in determining authorship of poetry, the

rhythmic meter, determined by the order of words in a line and the line’s resulting syllabic patterns,

plays a larger role in shaping its style (12).

2.1.4 Latin Composition

When beginning to speak of Latin Composition, it is important to state precisely what form of

composition is intended. Nutting (37) states that J. Arbuthnot Nairn considers three main types of

composition: translating Latin into another language and then back into Latin, translating English

into Latin, and creating original text. As the Oxford Latin Composition test required composing

2.2. RELATED WORK 14

in the style of particular authors, for this project we will be focusing on creating original author-

styled text rather than performing style transfer (the act of maintaining the original meaning behind

text but changing its style) (47).

2.2 Related Work
There has been research in the area of generating text that accounts for style and authorial style

specifically, which this project seeks to build upon specifically for Latin authors.

Styled Text Generation Generating poetry computationally is not a novel idea. In fact, according

to Gonçalo Oliveira (23), it can date back to the 1960s, yet, given the challenging nature of poetry

specifically, the challenge remains popular within the Natural Language Research community.

Generating stylistic poetry, however, is an even more complicated task as it can require expert

labeling (54). In Yang et al. (54), the authors specifically aim to generate poetry in specific styles

in an unsupervised manner, eliminating the need for expert labeling or development of rules or

templates, and they believe they were the first to do so. They accomplished their generation

through a sequence-to-sequence model with an attention mechanism and then the model attempts

to maximise mutual information, a concept from information theory to measure the dependency

of random variables (54).

In Lin et al. (32), the authors found it was possible to imitate the style of text by treating an

example of text, whose style you wish to imitate, as a "soft" template, and then they were able to

work new content into this "soft" template to maintain both the original style whilst incorporating

new content. Although the authors did not make any mention of or investigate capturing authorial

style explicitly, it may be possible to perform this content transfer with authorial style by using the

author’s texts, although, currently, this approach would limit the length of text generated.

Author-Stylized Text There has, however, been work specifically investigating the generation

of author-styled text. In Liu et al. (33), the authors investigate the problem of article headline

generation and propose a new approach for headline generation that takes into account an author’s

historical headlines to create author-styled headlines. They create a transformer based sequence-

to-sequence model that uses contrastive learning, which contrasts articles from the same author

against articles from a different author to learn (31) what discriminates the two, and they also

takes into account a style vector, which is an averaged vector of all the historical headlines of an

author, using vector fusion methods.

In Tikhonov and Yamshchikov (46), the authors employ a long short-term memory (LSTM)

network that utilise phonetic and semantic embeddings to generate Russian and English poetry

in the style of particular authors. They also propose a new cross-entropy metric to evaluate the

stylistic similarity of the generated poems and the author.

The approach of fine-tuning pre-existing language models on the desired author’s texts with

the aim of capturing authorial style, as outlined in 1.2, resembles work by Syed et al. and thereby

also Singh et al., as they build on the former’s work. In Syed et al. (44), the authors propose

StyleLM, a language model built by pre-training a transformer on a corpus of text in the author’s

language (in their case English) and then fine-tuning with denoising autoencoder loss, to generate

author-styled text without parallel data for that author. In Singh et al. (42), which shares an author

with the former paper, they build upon the former paper’s work by introducing a new framework:

2.3. BACKGROUND 15

"DRAG: Directing a Generator for Stylized Rewriting", and this framework has the same stages

as the paper by Syed et al. but with the added final stage of using a novel framework, inspired by

reinforcement learning, that they introduce to further fine-tune the language model to yield better

results.

2.3 Background
In this section, I review the relevant groundwork upon which the rest of the research project is

built. In particular, this section details different language models that will be used, namely: Trans-

formers, the most foundational model whence all the subsequent models are based upon (49);

Bidirectional Encoder Representations from Transformers or BERT (22); and Large Language

Models — specifically, ChatGPT2 and LLAMA (48).

2.3.1 Transformers

It is far from an overstatement to claim that the introduction of transformers in Vaswani et al. (49) is

one of the most significant developments in the recent history of natural language processing. Like

most state-of-the-art model architectures prior to transformers, transformers utilise an encoder-

decoder network. The primary difference, however, with a transformer is that it only employs

attention, rather than the historic approach of using recurrences or convolutions, and, in particular,

the use of self-attention, where each encoded token knows its position and emits both a key and a

query. The query emitted dictates what prior keys the token is looking for and the relevant attention

is then determined through a scaled dot-product of all the prior keys and this query, where the

prior keys and tokens of a high compatibility will yield a larger value, thereby contributing more

information into this token’s position (49; 30). Additionally, because of the lack of recurrences

as utilised by prior sequence-based language models, the transformer was more parallelisable,

resulting in faster training times and out-performed other models with new state-of-the-art scores

for translation.

2.3.2 BERT

Researchers at Google, about a year after the advent of the transformer, released another landmark

natural language processing paper in (22), where they introduced Bidirectional Encoder Repre-

sentations from Transformers (BERT). If the most noteworthy feature of the transformer was its

self-attention, then for BERT it would be its bidirectionality. BERT being bidirectional means

that, unlike prior language models, the information from the text was understood in both direc-

tions (left-to-right and right-to-left), and it does this through its model architecture, a multi-layer

bidirectional transformer based on transformers as above in 2.3.1. In order to pre-train BERT, the

researchers utilised masked language modelling, wherein the model randomly masks out words in

its input and the goal then becomes to predict the masked words. Once BERT is pre-trained, it can

then be fine-tuned for various natural language processing tasks. For instance, in the paper, they

showed that fine-tuning BERT could outperform prior systems for the Stanford Question Answer-

ing Dataset, where the objective is to answer a question based on a passage provided that contains

the answer (22).

2https://openai.com/blog/chatgpt

2.3. BACKGROUND 16

2.3.2.1 Latin BERT
BERT was first released as two models (one solely for English and a general multilingual model)

(22; 18), but, in following years, researchers have trained BERT models for a variety of languages,

eventually including Latin. In Bamman and Burns (18), the authors presented Latin BERT, a con-

textual language model for Latin. The model was trained on a dataset comprised of 6 sources,

spanning from Classical Latin into Contemporary Latin with translations of contemporary work.

They show 4 main natural language processing case studies for Latin BERT: part-of-speech tag-

ging, text infilling, word disambiguation, and contextual nearest neighbors.

For the part-of-speech tagging case study no further fine-tuning was actually required. In-

stead, since ‘cum’can be in different parts of speech according to context, they encoded 100 sen-

tences with the word Latin word ‘cum’as a preposition and another 100 as a conjunction and then

withdrew the representation of ‘cum’from each sentence. Afterwards, they found that, if graphed,

the vector representations of ‘cum’were nearly perfectly separated dependent on its usage (18).

Given the pre-training method of BERT was through masked language modelling as de-

scribed in 2.3.2, Latin BERT is well-suited to the second case study, text infilling, which involves

predicting a word that has been removed from context (18). By taking cases where text is missing

and humans have determined the most likely word missing and removing them from Latin BERT’s

training, the authors were able to test Latin BERT’s ability to predict the human-determined word

given context. Retrieving Latin BERT’s top 50 predictions for this test data, the authors discovered

that its top guess was the human-determined word 33.1% of the time, the human-determined word

was in the top 10 predicted words 62.2% of the time, and in the top 50 predictions 74.04% of the

time (18).

The authors also attempted the more challenging task of word disambiguation, which involves

determining the appropriate relevant meaning of a word in context (18). The authors mention two

examples to make the notion clearer: ‘est’in Latin may either mean ‘he/she/it eats’or ‘he/she/it is’,

and another example, which does not rely on the form of the word, is the Latin word ‘vir’can mean

‘man’but it can also contextually mean ‘husband’. For this problem, they create a new dataset for

evaluating a model’s performance on word disambiguation in Latin and they find that Latin BERT,

fine-tuned for this task, results with an accuracy of 75.4%, where a random choice would have

resulted with 50%.

The authors’ last case study provides insight into finding similar texts to a provided one,

particularly finding similarity of specific instances of words in context (18). This would enable

further work to be done for intertextuality, discovering relationships between similar but distinct

texts. The authors proposed way of accomplishing this task is by encoding representations of a

Latin text dataset — in their example, they used a subset of the Classical Latin texts — and then

finding the nearest neighbours of a word’s representation within a particular sentence.

2.3.3 Large Language Models
The base BERT language model had 110 million parameters and the large BERT model had 304

million, which, whilst quite sizable — particularly for the time of its release — is orders of mag-

nitude smaller than the models of this section. In particular, the models reviewed are Generative

pre-trained transformers (GPT) 3 (20), whose series of models serves as the basis for ChatGPT —

the model used in this paper, and LLaMA (48).

2.3. BACKGROUND 17

2.3.3.1 GPT-3
The methodology behind OpenAI’s GPT framework, based, as evidenced by its name, on trans-

formers as seen in 2.3.1, is rather straightforward and effective. The approach is to train a model

with both a large parameter size and a large amount of data, as the authors show that increasing

the size of the model results with better in-context learning (20). Thus, the researchers put for-

ward GPT-3, a 175 billion parameter language model that was trained on 410 billion tokens of text

data from the CommonCrawl, 19 billion from WebText2, 12 billion from Books1, 55 billion from

Books2, and 3 billion from Wikipedia (20). One of the fascinating things about Large Language

Models as Brown et al. (20) shows are its varying levels of effectiveness without the need for

fine-tuning under three different approaches: few-shot, one-shot, and zero-shot.

Before explaining how the other methodologies work, it is worth noting that fine-tuning for

large language models like GPT is in no practical way different than for standard models, where

a provided model has its weights updated by further training on a specific task-related dataset

(20). As always with fine-tuning, the usual drawbacks and advantages stand. Most notably, the

drawbacks are the increased likelihood of overfitting resulting in generalisation and the need for

a dataset for every new particular task (20), and the main advantage is, of course, potentially

improved performance for the task at hand. The authors did not choose to fine-tune in Brown et al.

(20), but they noted it might be worth investigating in the future.

Instead of updating the weights through fine-tuning, however, the few-shot approach allows

the model to see a few examples of what is expected during inference (20). That is the model is

provided with examples (typically between 10 and 100) of context and completion for a desired

task — for instance, if the task is translating English to French, the examples are an English word,

its context, followed by its French translation, its completion — where the last example referred to

as the prompt only has context, allowing the model to complete what it believes the result should

be contextually (20). This approach has a clear advantage over the fine-tuning one discussed above

in that, although some examples are requisite, there is no longer a need for an entire task-specific

dataset for a given task, but the model under performs relative to state-of-the-art fine-tuned models

for the task(20).

The one-shot approach works in a similar manner as the few-shot, but, where the few-shot

uses multiple examples, the one-shot is provided a description of the task at hand followed by one

example of the task (20). The zero-shot approach analogously follows, where no examples are

provided but the model is given the description of the task with a prompt (20).

As the title of the paper, "Language Models are Few-Shot Learners", suggests the authors

evaluate GPT-3 using few-shot, one-shot, and zero-shot settings, showing that GPT-3 performs

particularly well in natural language processing tasks in a few-shot setting and they conjecture

that very large language models may continue to be the key forward for general natural language

systems (20).

ChatGPT Although OpenAI did not originally investigate fine-tuning GPT-3, as mentioned above,

in late 2022, the company released ChatGPT3, which is a website that allows interaction with their

fine-tuned model of GPT-3.5, the successor to GPT-3. ChatGPT is a natural language based assis-

tant, which was optimised through Reinforcement Learning with Human Feedback. An important

3https://help.openai.com/en/articles/6783457-what-is-chatgpt

2.4. PRIOR WORK: LATIN AUTHORSHIP 18

note is that, although the website is accessible to the public, the data and model for GPT-3.5 is

entirely private and proprietary, which makes external research validation and assessment of the

model more difficult.

2.3.3.2 LLaMA
In stark contrast to the recent private and proprietary GPT models, Meta AI released a series of

state-of-the-art Language Models called LLaMA, ranging from 7 billion parameters to 65 billion

parameters, which were trained on public data (48). Additionally, all the model weights were also

accessible to the research community (48). The authors also found that the LLaMA model with

13 billion parameters outperform GPT-3 in zero-shot and few-shot tasks, as detailed above, which

is indicative of its improved efficiency since it’s over 10 times smaller than GPT-3 (48).

2.4 Prior Work: Latin Authorship
Before proceeding now with the rest of the project, it is important to acknowledge the prior work

in this domain that I have undertaken. As part of completion of CS4040 Research Methods,

I investigated the subject of authorship attribution in Latin. The motivating factor behind the

research was as a precursor to this project. Before generating text in a particular authorial style, it

seemed worth verifying that the different author-styled text could be separated, as it implies that

the styles implicit within the texts were unique (19).

2.4.1 The Dataset

Creation The primary difficulty was creating a unified dataset similar in design to the dataset

in Latin BERT, 2.3.2.1. The dataset was created using the Classical Languages Toolkit (28), a

Python library, and consisted of texts from The Latin Library, Italian Poets in Latin, and the CLTK

Tesserae Latin Corpus. The two main difficulties in developing this dataset was that each of these

corpora had different formats and that each distinct text should only be included once. For the time

being, the texts were made distinct by only including texts of an author if texts from that author

had not been seen from a prior source, but, in the future, the Levenshtein distance can be used to

determine the similarity between texts to only save distinct texts (19; 9).

Preprocessing The preprocessing of text for the dataset in Behr (19) included:

• Making all the characters unicode. This procedure was included because there were Greek

letters in some of the text, which were transliterated, and the models were meant to only use

Latin characters.

• Making all words lower-case. Across the texts from the different sources, there was an

inconsistent use of capitalisation, so the texts were standardised by making all the text lower-

case, which does not remove any of the meaning of the texts.

• Removing all numbers. There were instances of numbers for both line and verse numbers,

which were unnecessary.

• Removing all the special characters. The removal of special characters like tabs and newline

allowed for the all the text to be in one cohesive plain-text block.

2.4. PRIOR WORK: LATIN AUTHORSHIP 19

2.4.2 Results
The main results of this research relevant to this project were that the texts were indeed separa-

ble by author, which gave credence to the idea that there was implicit style in the text, and the

development of the dataset, which is used in this project.

Chapter 3

Design & Methodology

As this project revolves around experimentation rather than developing a system, this chapter

introduces and provides justification for the design choices and approaches for the different models

and the requirements for this project.

3.1 Requirements
The requirements are split into functional and non-functional requirements of the project’s finished

code.

3.1.1 Functional Requirements
The functional requirements for the models in the project follow from the primary objective out-

lined in 1.2. Namely, the primary functional requirement is for the model to be able to generate text

in the style of a provided Latin author, but, just as the objective had sub-objectives, the functional

sub-requirements for this primary requirement follow equivalently for all the models, excluding

ChatGPT.

Extracting specific author subsets : It will be necessary to interact with the dataset to retrieve

text from the specific authors so the models can be trained.

Training : It is naturally crucial to be able to define and train the models (where applicable), but,

even further, it is important that the code should be easily adaptable for other authors in the dataset.

New Inference : After training the models, another requirement is being able to load the models

again and generate new text using these models. Moreover, the models must be able to generate

new text as a continuation of some seed text — i.e. a starting point or basis — provided.

3.1.2 Nonfunctional Requirements
3.1.2.1 Code Quality
As with any project that involves software development, the quality of the code is paramount.

There are many ways to determine the quality of the code, many different standards one could

go by, different development methodologies, but, in all cases, the outcome should result in code

that is readable and understandable to other developers. To ensure that the code maintains a high

standard, everything should be well-documented, the code should include necessary comments,

and the git will be regularly used to maintain a version history of the project.

Moreover, the research community has largely adopted the use of Python Jupyter notebooks1,

which will also be employed. These notebooks allow for a combination of documentation and

1https://jupyter.org/

3.2. DESIGN PREREQUISITES 21

Data available
Name of Dataset Size of Dataset (MB)
The Latin Library 96.3
Italian Poets in Latin 1.1
CLTK Tesserae Latin Corpus 53.9
Raw Total 151.3
Final Preprocessed Total 60.7

Table 3.1: Breakdown of Sources for the Unified Dataset

code snippets, so the justification and explanation of chunks of code along with references can be

shown. Using these notebooks makes it easier for subsequent researchers to replicate the results

of the project.

3.2 Design Prerequisites
3.2.1 Dataset

As mentioned previously, this project contributes to the research of low-resource languages. It is

therefore important to be explicit in the resources (the data) available for this project, since it is

both potentially one of the limiting factors but also functions as one of the interesting aspects of

the project and provides insight to the models’ effectiveness. Clearly, the dataset is a prerequisite

to train the models, which, outside of ChatGPT, is done for all of them. Another prerequisite for

the data is a single corpus interface. It would be useful to have an interface that has access to

all the data from across the different sources in the preprocessed format described in 2.4.1, as it

would enable easier use when developing and training the models.

Data Available As stated in 2.4.1, the dataset used in this project pooled data from three primary

sources: The Latin Library, Italian Poets in Latin, and CLTK Tesserae Latin Corpus. The amount

of space in megabytes of these resources and their resultant combination into one unified dataset

(with the preprocessing as described above) can be seen in Table 3.1. Additionally, it is worth

noting that, since this project looks at Classical Latin text, the Italian Poets in Latin will be of less

use as it does not contribute to our final author subsets. To put the size of resources available into

perspective, in Tikhonov and Yamshchikov (46), the authors were focusing on author-styled poetry

generation in English and Russian, and those respective datasets were 150 and 140 megabytes.

Thus, this project’s dataset of both prose and poetry in the Classical Latin time period is therefore

approximately 40% the size of their solely poetry-focused datasets.

Corpus Interface The guiding motivation behind the corpus interface is both to abstract the access

to the project’s dataset with parameters dictating how it should be accessed, which allows the

interface to be referenced with the parameters in one line of code rather than repetition of many

lines throughout the project, and to be able to have auxiliary functionalities on the data that are

useful for other components (e.g., a function to associate every author to a unique colour so that

plotting is easier). Consequently, the corpus interface is a class that has a dictionary of all the

authors to their works and then has associated functions that make accessing particular works and

information easier.

3.3. LATIN BERT 22

3.2.2 Author Selection

Although the choice of authors for this project does not change the function of the models, it is

clearly a prerequisite before proceeding with generation. A number of considerations were taken

when determining the most suitable authors for this task.

Firstly, the amount of text available for the author must be a consideration, as, if there is very

little text available for a given author, then fine-tuning or training the models will likely overfit

to the point of not generalising at all. Figure 3.1 visualises the authors with the 25 most extant

texts within the dataset. The author with the most text written is Cicero, one of the most famous

Latin authors, but, interestingly, the second most prolific author after Cicero is Jerome, who lived

in the 4th century AD (outside the the time period this project is concerned with) and translated

the New Testament into Latin. Similarly, Bede, who appears towards the end of Figure 3.1, was

not a Classical Latin writer, so he too is removed from consideration.

Secondly, as this project concerns replicating style, it makes sense to try to pick authors that

have a clearly identifiable style within the community of Latinists2. On the r/Latin subreddit3,

someone asked "Which classical author has the best style in your opinion? In what way?" and the

consensus seemed to be that for poetry Ovid and Vergil have the best style and for prose Cicero,

Seneca, and Plautus (13). This view is corroborated by the recurring names of these authors across

the internet and in Clarence Linton Meader’s work, as mentioned in 2.1.3 (35). On the Latin

literature wikipedia page, when mentioning examples of Roman authors, they reference Cicero,

Vergil, Ovid, and Horace (8), and, on a wikipedia page devoted to study of Latin poetry, the poets,

whose work is used as examples throughout the page, are Catullus, Horace, Virgil and Ovid (12).

Whilst none of these references are claiming these authors to have the best style, their frequent

appearance shows the prominence of these authors, which is something to take into consideration

when selecting the authors.

Lastly, given the initial inspiration behind this project was the Oxford Latin Composition

entrance exam, it seems fitting to take into account the authors that are still relevant for student

who study Classics and are preparing for university. In the United States, there is a Latin exam

for high school students called the Advanced Placement (AP) Latin Exam, which gives students

college credit (enabling them to have credit equivalent to Latin 1 once they enter university) if they

earn a high enough grade on the exam. This exam focuses on Caesar and Vergil.

Taking into account how much text is available, the style of the author, and the initial inspi-

ration for this project, the project will focus on replicating the style of Cicero, Caesar, Vergil, and

Ovid. It also enables us to investigate the replication of style in prose (Cicero and Caesar) versus

poetry (Vergil and Ovid).

3.3 Latin BERT
When determining the design or the approach of how to utilise LatinBERT for this project, it

seemed reasonable to investigate what LatinBERT was capable of generating by default and

whether it would continue writing in the style of an author if it was provided starting text in

that author’s style. A concern was that, since it was trained on this data, it may just continue the

2A Latin specialist
3A subreddit being a particular community on the online discussion website reddit

3.3. LATIN BERT 23

Figure 3.1: Top 25 extant authors in the Dataset

original text verbatim.

Before evaluating this question however, it should be noted that, whilst Latin text is what

LatinBERT is designed to work with, it naturally can not directly interact with text, so the input

text must be represented or rather encoded before given to the model. LatinBERT comes with

its own tokenizer, however, to address this issue, which is used in all the LatinBERT approaches.

Additionally, there are constraints on the length of text that any model can encode and generate

within one context or chunk of text, and LatinBERT allows for a maximum of 512 encoded tokens

(18).

Knowing how LatinBERT encodes the text and its maximum length of encodings, allows us

to examine its default generation ability. I randomly sampled 49 contiguous word chunks of size

200 from different Latin texts spanning a few different authors and then allowed LatinBERT to

attempt to generate the continuation for each of these chunks. It’s worth noting that the generation

performed was functionally the same as text-infilling, as described in 2.3.2.1, but, instead of pre-

dicting a word within context, it is predicting a word at the end of context. Afterwards, I compared

the generated continuation and the actual continuation of the text. In table 3.2, I show a few of the

results from this sampling approach where the first fourteen words are provided;4 it is clear that

4The other results are similarly quite poor. I include all 49 of these generated texts in C.2.

3.4. TRANSFORMER 24

Generated Text Examples
Author Correct Continuation Generated Continuation
Cicero sumus. sed in rebus apertissimis nimium longi sumus.

perfecto enim et concluso neque virtutibus neque amicitiis
usquam locum esse, si ad voluptatem omnia referantur, nihil
praeterea est magnopere dicendum. ac tamen, ne cui loco
non videatur esse responsum, pauca etiam nunc dicam ad
reliquam

sumus. sed in rebus apertissimis nimium longi sumus. per-
fecto enim et concluso neque virtutibus sumus amici amici
amici amici amici nos si sumus amici amici amici sumus si
non nos amici enim ipsi , sumus amici ipsi ipsi ipsi non ipsi
sumus ipsi ipsi

Cicero senatus in capitolium; parata de circumscribendo adules-
cente sententia consularis, cum repente–nam martiam le-
gionem albae consedisse sciebat–adfertur ei de quarta nun-
tius. quo perculsus abiecit consilium referendi ad senatum
de caesare: egressus est non viis, sed tramitibus paludatus.
ex eo non iter, sed cursus et fuga in

senatus in capitolium; parata de circumscribendo adules-
cente sententia consularis, cum repente–nam martiam le-
gionem albae consedisse omnia omnia illa omnia omnia
facta tum tum tum tum omnia omnia tum , tum tum tum
, , omnia , facta facta facta facta illa tum facta tum facta

Vergil trinacriam, et caelum subtexere fumo. noctem illam tecti
silvis immania monstra perferimus, nec quae sonitum det
causa videmus. nam neque erant astrorum ignes, nec lu-
cidus aethra siderea polus, obscuro sed nubila caelo, et lu-
nam in nimbo nox intempesta tenebat. postera iamque dies
primo surgebat eoo,

trinacriam, et caelum subtexere fumo. noctem illam tecti
silvis immania monstra perferimus, nec quae sonitum , , , ,
, , vertice ,

Ovid animo dignaque parque fuit. "pone metum, veni!" coniunx
ait. illa revixit deque viri collo dulce pependit onus. interea
iuvenis furiales regius ignis concipit et caeco raptus amore
furit, forma placet niveusque color flavique capilli, quique
aderat nulla factus ab arte decor; verba placent

animo dignaque parque fuit. "pone metum, veni!" coniunx
ait. illa revixit deque viri collo " " " " " " " " " " " " " " " " "
" " " " " " " " " " " " "

Table 3.2: LatinBERT Looping in generation with the last fourteen words from the context
provided

there is something wrong! Under this methodology, it appears that LatinBERT generation starts

to loop — that is, the word or punctuation LatinBERT deems most likely repeatedly appears again

and then the sequence leading to that word sometimes also repeats. Even though LatinBERT by

default seems to be very good at text-infilling, next word generation at least in this methodology

seems poor.

There are multiple ways to combat this looping issue, however. One of the first ways to

immediately tackle this problem is to simply sample from the top k (where k is some whole

number) words LatinBERT thinks might be the output rather than only selecting the top word.

Another possible approach was too follow the same methodology as in Wang and Cho (50), which

shows another way to sample sentences from BERT. The authors suggest that BERT is a Markov

random field language model, and, as such, they consider sampling methods that draw inspiration

from Monte Carlo Markov Chain processes. In particular, they propose that Gibbs sampling can

be employed to sample texts from it (50). I did attempt to use this methodology to sample from

LatinBERT, which seemed to have some improved results over the initial LatinBERT predictions

but not significant improvements over the LatinBERT that samples randomly from the top k words.

Additionally, it should be noted that, whilst their methodologies can still be used and BERT can

be used to generate text, the authors later retracted their claim that BERT is a Markov random field

language model (21).

The methodology for LatinBERT that was eventually adopted revolved around masked lan-

guage modelling in conjunction with sampling from the top few words. It is important to note that,

when retrieving particular author subsets from the dataset through its interface, the authors’ texts

are returned in a shuffled order. The principle behind this is to not allow the order in which the

texts were added to bias the training of the model. Once the desired author subsets are extracted

from the dataset and prepared for fine-tuning by masking 35% of the words, LatinBERT is fine-

tuned on them. This generation methodology qualitatively yielded significant improvements over

the prior generation approaches.

3.4. TRANSFORMER 25

Figure 3.2: The Transformer Architecture - Source: Vaswani et al. (49)

3.4 Transformer
In addition to the pre-built models employed, I decided to include a newly trained transformer on

the Latin author subsets. Although the architecture of the transformer does not deviate from the

original paper by Vaswani et al. (49), which can be seen in Figure 3.2, the input to the transformer

needs to be determined. In LatinBERT, there was a tokenizer that would encode the text to be

operated on by the model, but, when defining our own transformer, there are various ways to

encode the text and it may affect the performance of the model.

Although Brown et al. (20) use byte-level byte-pair encodings that use less space than most

character-based approaches before it (51), for the sake of simplicity a character-level is employed

here. A character-level encoding works by having each unique character correspond to a unique

number and then all the input text is encoding by replacing each character with their respective

numbers. Similarly to decode the numbers, every number in the encoded text is then replaced with

its associated character. For instance, if one used American Standard Code for Information Inter-

change (ASCII) character encodings, the text "hello" would be "104 101 108 108 111", but, due

to the preprocessing in this project, the number of characters required is significantly smaller than

the number of available ASCII encodings. The transformer then has an internal table that maps

every possible character to a vector of a customisable size, which is how the input embeddings in

Figure 3.2 are created.

The transformers add these input embeddings to their positional encodings, which comes

from a table that maps the location of the text — out of a custom possible maximum length, which

for this project was somewhat arbitrarily chosen to be 256 — to an embedding vector of the same

size as the input embeddings. Afterwards, the model passes these vectors through the attention

mechanisms that characterise transformers as described in 2.3.1.

Having determined the design of the transformer, the design and methodology for training

it to perform author-styled text generation is the logical next step. In Singh et al. (42) and Syed

et al. (44), the authors first either acquire pre-trained transformers or pre-train them themselves, so

3.5. CHATGPT 26

the transformers learn about the language, and then the authors fine-tune these pre-trained trans-

formers on particular author subsets with the aim of teaching the transformers their authorial style.

For this project, this approach would mean training our designed transformer on the Latin dataset

and then fine-tuning on our specified authors. Given that this is how author-styled generation has

historically been approached, this project will follow this methodology, but we will also observe

what happens when the pre-training stage is eliminated from this process – i.e. only training on a

transformer on particular authors.

In Singh et al. (42) and Syed et al. (44), it is unclear unsure whether, during the pre-training

phase, the authors removed the subset of the author whose style they wish to mimic, so that it

would be unseen in the fine-tuning phase. At first I opted not to remove the particular author

from the dataset during the pre-training phase for this project because I was uncertain how much

data the transformer needed to learn about Latin generally, as is the goal during the pre-training.

Moreover, the already somewhat limited data is split into 80% for training and 20% for validation,

and by removing large authorial subsets may cause the data to become too limited. Furthermore, as

LatinBERT was fine-tuned on particular author subsets despite having been pre-trained with these

subsets, removing these author subsets from the dataset for my Latin transformer’s pre-training

phase would be potentially handicapping it needlessly.

3.5 ChatGPT
Although this project undertakes no fine-tuning or development of ChatGPT, it is still critical to

explain the design and methodology for how ChatGPT is used. As stated in 2.3.3.1, ChatGPT

is a website that provides an easy interface for the end-user to leverage a version of the language

model GPT 3.5 (and for some users GPT-4) fine-tuned to interact with the user in a helpful manner

akin to an assistant.

Initial Approach Just as with LatinBERT, trying the simplest approach first is logical as it es-

tablishes a precursory baseline for subsequent iterations to try and improve upon and because, if

it works as intended, no further work is required. Thus, the first prompt tried for ChatGPT can

be seen in Figure 3.3. ChatGPT replied helpfully by asserting that it could and then generated a

poem, which it claimed was a new poem in the style of Catullus as asked, but, after examining the

text generated, it became apparent that the text was actually a poem by Horace, a poet of the same

era.

Can you write a new poem in Latin in
the style of Catullus?

Figure 3.3: First Prompt for ChatGPT

Further Prompt Engineering It became clear after the initial experimentation that a different

approach would be required with more intricate prompt engineering. Prompt engineering refers

to the act of writing the task description, as seen described in the different "shot" approaches in

2.3.3.1, for language models to understand what is required and perform the task correctly (1).

I then pedantically explained the concept of the Oxford University Latin Composition exam,

the inspiration for this project, and ask ChatGPT to pretend they are a prospective Classics student,

3.6. LLAMA 27

who is tasked with writing new Latin text in the style of the author I specify. The full prompt can

be seen in Figure 3.4. ChatGPT again helpfully asserts that it can accomplish this task, but, after

prompting it write in the style of Caesar, it responded with the start of Caesar’s work "Commentarii

de Bello Gallico". It was successful in identifying the correct author, but it failed in generating

new text.

Let’s play a game where you’re pretending to be a prospective Classics student at Ox-
ford University and, as such, you are instructed with writing new Latin text in the style
of particular authors determined by a prompt following the form:
Author: X, where X is the author I want you to replicate.
You then respond with a proposed title and the body of the text you are writing in the
form:
Proposed Title: X, where X is the proposed Title
Text: Y, where Y is the text for the piece.
If I ask any other questions not in the form of that prompt, you can answer me accord-
ingly.

Figure 3.4: Prompt for ChatGPT to pretend it’s a prospective Classics student

After I informed ChatGPT that it had provided me with existing Latin text, it attempted to

correct this error by summarising Caesar’s "Commentarii de Bello Gallico" in Latin instead of

creating new text. After correcting this error, however, ChatGPT was able to create unseen Latin

text, which, according to ChatGPT, was ostensibly in the style of Caesar.

I want to modify the game where after I say the author. I also say the starting phrase
you must begin the new work with.
E.g.
Author: X
Prompt: Y

and then you respond with
Text: Y Z, where Y is the prompt I provided and Z is the continuation

Figure 3.5: Final Prompt Template for ChatGPT

Establishing this context for ChatGPT allowed for a new prompt, which can be seen in Figure

3.5, that enabled me to provide starting text that ChatGPT use as a basis to generate from in the

style of the provided author, and this template is what was used for the final text generation in the

other authors’ styles.

3.6 LLaMA
It’s great for the research community that Meta has trained and released LLaMA, but using

LLaMA poses a couple of design and methodology challenges for this project. Firstly, on a con-

ceptual level how can LLaMA be used to generate Latin author-styled text? Use of the "shot"

learning approaches is difficult because it might require example author-styled composition texts

for generation, and, similarly, how can LLaMA be fine-tuned to generate text that does not exist

yet? Secondly, even if a dataset is found or created that allows LLaMA to be fine-tuned for this

task, fine-tuning a large language model is very computationally intensive.

3.6. LLAMA 28

3.6.1 Alpaca

Researchers at Stanford University fine-tuned LLaMA (the 7 billion parameter version) to create

an instruction-following model and dataset that can be studied in academia (45). In order to create

a relevant dataset for LLaMA, the researchers employed a technique called the "self-instruction

method", where they first used a dataset of 175 human-created instruction-output pairs and used

OpenAI’s text-davinci-0035 to create more instructions with the original human-created ones as

examples (45). They created 52 thousand instruction-following examples through this methodol-

ogy, which is accessible to everyone (45).

After they created their dataset, all that remained was to fine-tune the LLaMA model on

these weights and evaluate the results. They were able to fine-tune LLaMA (7 billion parameter

version) within 3 hours, using eight 80 Gigabyte A100 GPUs, and the authors estimate that the

fine-tuning would cost "less than $100 on most cloud computing providers" (45). To evaluate the

model’s performance, they performed a blind pairwise test comparing Alpaca and text-davinci-

003, and the results were shockingly slightly in Alpaca’s favour (45) despite having fewer model

parameters, less training time, and a rather straightforward approach to the generating the data

for fine-tuning. They noted that more broadly Alpaca behaved quite similarly to text-davinci-003

over a range of inputs (45), but they also mention the limitations that Alpaca faces. Most notably,

Alpaca like other language models is prone to hallucinating information and thereby capable also

of spreading misinformation (45).

3.6.2 LoRA

Although fine-tuning LLaMA for less than $100 to the point that the model functions similarly to

text-davinci-003 is impressive, it required capital or resources that are not necessarily obtainable

(at least for the scope of this project), as mentioned at the start of this section. Thankfully, there

is a way to overcome this hardware requirement barrier. Instead of performing backpropagation

across all the trainable parameters when fine-tuning a large language model, what if it was instead

possible to only train on select specific layers? This is part of the idea behind Low-Rank Adaption

(LoRA), introduced in Hu et al. (24). In fact, LoRA can accomplish this whilst retaining the

original weights of the models.

Figure 3.6: LoRA in action - Source: Hu et al. (24)

5This model uses GPT-3.5 turbo, according to https://platform.openai.com/docs/models/gpt-3-5

3.6. LLAMA 29

LoRA freezes the model’s weights during training and instead adds adaptable trainable lay-

ers, so that the model processes an input both in its regular layer and its trainable layer summing

the result before passing it to the next layer. Then, during optimisation only the adapter mod-

ule weights are updated (24). When one wants to use the original model, nothing needs to be

done, and, when one wants to use the fine-tuned model, the adapter weights are loaded with the

model. Figure 3.6 shows the process of LoRA initialisation and how the adapter modules work in

conjunction with the original hidden weights of the model that remain unchanged afterwards.

3.6.3 Alpaca with LoRA
Shortly after the release of Alpaca (45), a technology enthusiast implemented LoRA (24) for the

process of recreating Alpaca Wang (52). However, with this implementation, the fine-tuning was

accomplished within an hour of training using one RTX 4090, a commercial GPU, and the model

qualitatively performs on a comparable level to Alpaca (52). A comparison of outputs can be

seen in Table 3.3, which is a verbatim extract from the Alpaca-LoRA github page (52), and, as

seen in the table, each model produces comprehensible text despite the vastly different hardware

requirements for each of them to run.

Comparison of Instruction-following Models
Model Output
Alpaca-LoRA Alpacas are members of the camelid family and are native to the Andes

Mountains of South America. They are known for their soft, luxurious
fleece, which is used to make clothing, blankets, and other items. Al-
pacas are herbivores and graze on grasses and other plants. They are
social animals and live in herds of up to 20 individuals.

Stanford Alpaca Alpacas are small, fluffy animals related to camels and llamas. They are
native to Peru and Bolivia, and were first domesticated around 5,000
years ago. They are kept mainly for their fine, soft fleece, which is
used to make knitwear and other garments. Alpacas are herd animals
and live in small family groups, led by an older male. They are highly
social animals and can form strong bonds with their owners.

text-davinci-003 Alpacas are a domesticated species of South American camelid, similar
to llamas. They are native to the Andes Mountains in South America
and are kept as livestock for their soft, luxurious wool. Alpacas are so-
cial animals and live in herds of up to 20 individuals. They are typically
kept in small herds of two to five animals, and are relatively easy to care
for. Alpacas are herbivores and feed on grass, hay, and other vegetation.
They are also known for their gentle and friendly nature, making them
popular as pets.

Table 3.3: Models after being prompted "Instruction: Tell me about alpacas."
- Table Source: Alpaca-LoRA’s github (52)

3.6.4 Approach for Latin
The second question posed at the start of this section can be addressed by using LoRA, but the

first, which drew into question the correct way to utilise LLaMA for author-styled text generation,

remains. Taking inspiration from Stanford’s Alpaca, however, I developed a methodology to fine-

tune LLaMA for author-styled text generation.

I created a dataset that would allow LLaMA to be fine-tuned on particular authors. Firstly,

recall the functional requirement that states the project not only needs to be able to write text in

the style of particular authors, but it must be able to continue text from a given starting point. The

3.6. LLAMA 30

design of the dataset logically follows: first, sample texts of an arbitrary length (at least 50 words

long) from our chosen authors; secondly, take the first fourteen words from the sampled text and

add them to the end of the prompt "Write text in the style of <insert author> starting with "; thirdly,

pair this instruction with the full sampled the text; and, lastly, after repeating the first three steps

many times, save all of these prompt pairs in a JavaScript Object Notation (JSON) file of the same

format as the Alpaca dataset, which allows for ease of training through the same code as seen in

(52). These instructions capture both the importance of the seed text and the text that continues in

the same style of the author.

Chapter 4

Implementation

As the last section proposed and justified the designs and methodologies for each of the models,

this section will discuss the practicality of implementing these designs and methodologies. The

code and data for this project are entirely available on GitHub1.

4.1 Development
4.1.1 Language & Libraries
The programming language used throughout this project is Python, specifically Python version

3.9.16. Python’s ease of development and deployment (combined with the many machine learning

libraries made for it) make it the clear favourite for this project. Whilst many standard libraries

for this type of project were used, the two used most throughout the project are PyTorch (39) and

Hugging Face’s Transformers Library (2).

PyTorch (39) PyTorch is an open-source deep learning library developed by Meta, formerly Face-

book, and the developers of PyTorch in its paper explain that PyTorch was designed with both

usability and speed in mind, which was uncommon for prior deep learning libraries (39). PyTorch

accomplishes usability by maintaining a Pythonic interface and making "the complexity inherent

to machine learning ... handled internally by the PyTorch library and hidden behind intuitive APIs"

(39). These APIs are mainly made efficient through being based on a highly optimised C++ base,

its use of multiprocessing, and its ability to utilise a GPU through CUDA (39).

Hugging Face’s Transformers Library (2) The Transformers Library, as the name would indi-

cate, works well with transformer models. Particularly, it works well for a variety of pre-defined

transformer architectures, including BERT and LLaMA, which are clearly relevant to this project

(2). In fact, the library provides a straightforward way to create a dataset from a text file, a data

loader for the model to learn, and then a seamless way to train one of these transformer models.

Another reason to use the Transformers Library over other libraries is that it integrates well with

PyTorch (2), which, as already stated, is one of the main libraries used for this project.

4.1.2 Cloud Computing
Although a laptop computer may be sufficient for small scale machine learning experiments, when

trying to perform inference — let alone fine-tune — a large language model, a stronger computer

will likely be required as described in 3.6. Graphical processing units (GPUs) are useful for

larger machine learning projects due to their ability to run parallelised computations and so in this

12

4.2. DATA 32

project there is some minimum hardware requirement for training and running my transformer

model, LatinBERT, and LLaMA (the 7 Billion parameter version).

Because I do not have personal access to powerful GPUs, I used a cloud computer provider,

specifically for developing and deploying machine learning and artificial intelligence models,

called Paperspace3. Through a pro plan with Paperspace, I had access to the following GPUS4

for 6 hour periods: M4000, IPU-POD4, P4000, RTX4000, P5000, RTX5000, and A4000. These

GPUS in the timeframe described were sufficient for all of the work in this project.

4.2 Data

The Corpus Interface implementation follow exactly as its design in 3.2.1. It was a Python class

that can either load in an already preprocessed data file or it will generate a corpus file by loading in

all the relevant text, performing its preprocessing operations, and saving the dictionary of authors

to their works. There was, however, an unresolved problem with the preprocessing phase for the

Corpus Interface. Within the preprocessing phase there was initially a word, sentence, and lemma

tokenizer employed from the CLTK library (28), but the inclusion of the lemma tokenizer seems

to have resulted with an unwanted token that replaces punctuation with the string ‘punc’.

This error was noticed when the transformer model was generating the ‘punc’amidst actual

Latin words, even though ‘punc’is not a Latin word. As the transformer works on the character-

level, it was possible that the transformer was generating this series of letters intentionally or

randomly, but, after intently comparing the original text files with the resultant dataset, I realised

that the Corpus Interface erroneously added ‘punc’. To combat this issue, I removed the use of

this particular lemmatization tokenizer from the preprocessing process.

Author Size of Text Subset
(MB)

Cicero 1.06
Caesar .616
Vergil .579
Ovid 1.47

Table 4.1: Data available per author

Having established the desired authors in 3.2.2, it is also worth noting the size of the authorial

subsets that were used to fine-tune LatinBERT and to train the transformer from scratch, as this is

relevant to the notion of training within a low-resource context. The size of the authorial subsets

can be seen in Table 4.1.

4.3 Models

Although the implementation for the models follows almost directly from their descriptions in the

design section, it is worth explaining how the implementation was done so that other researchers

are able to recreate the results, and it is important to evaluate whether each model meets the

functional requirements outlined in the previous section.

4.3. MODELS 33

dataset = TextDataset(file_path=f"{author}_data.txt", tokenizer=tokenizer, block_size=256)
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=True,
mlm_probability=0.35)
train_dataloader = DataLoader(dataset, batch_size=batch_size, collate_fn=data_collator)

Figure 4.1: The code used to prepare the data for LatinBERT

4.3.1 LatinBERT
Although LatinBERT is not explicitly defined to work with the Hugging Face Transformers Li-

brary as some models are, the library allows LatinBERT and its tokenizer’s weights to be loaded

into the module AutoModelForMaskedLM and AutoTokenizer respectively. After the weights

have been loaded and the desired author subset has been stored, in order to fine-tune the masked

language model (in this case, LatinBERT) we want to a data loader of our desired text. This

operation has three sequential components to it: creating the requisite dataset object through the

TextDataset class where we establish the maximum context size, which will divide the text into

corresponding chunks, and, as 256 was the size chosen for the custom Transformer (see above

3.4), 256 was the chosen maximum context size for the chunks for fine-tuning as well5: creating

a data collator object by passing the dataset as a parameter into the DataCollatorForLanguage-

Modeling, which batches the data for masked language modelling using the LatinBERT tokenizer;

and, finally, creating the data loader by passing in the dataset and the collator object into the Dat-

aLoader class from PyTorch, which allows for ease of loading the data samples to fine-tune the

model. These steps can be seen concretely in code in Figure 4.1; it’s remarkable how these three

steps can all be accomplished in three lines of code using the HuggingFace and PyTorch libraries

as discussed above.

seed_text = "<seed text>".lower()
input_ids = tokenizer.encode(seed_text, return_tensors=’pt’)
outputs = model.generate(input_ids=input_ids.to(device), max_length=50, do_sample=True)
predicted_text = tokenizer.decode(outputs[0], skip_special_tokens=True)

Figure 4.2: The code used to generate new Latin text using LatinBERT

The simplicity seen in preparing the data above, as showcasing the powerful combination of

PyTorch and Hugging Face Transformers Library, can be seen again with LatinBERT’s training

process, which follows a standard training loop formulation where for a certain number of epochs

the model trains on the batches prepared in the data loader. Generation is also surprisingly simple

using these libraries, as seen in 4.2. After either loading a specific model or training, the desired

seed text is encoded using the LatinBERT tokenizer and then the HuggingFace library lets the

developer immediately generate with the input as a starting point. Afterwards, the text can be

decoded back into Latin using the same tokenizer.

After training on each desired author subset independently of each other (i.e. LatinBERT is

3https://www.paperspace.com/
4https://docs.paperspace.com/gradient/machines/#free-machines-tier-list
5It should be noted that the two contexts are not equivalent in terms of the amount of Latin they can contain because

they encode the text in different ways.

4.3. MODELS 34

freshly fine-tuned for each author), these newly updated model weights are saved, allowing new

generation to be performed by this process described above and seen in Figure 4.2.

Consequently, the LatinBERT model achieves all of the desired functional requirements from

3.1.1.

4.3.2 Transformers
The architecture of the character-level transformer design was implemented using PyTorch, fol-

lowing a tutorial by Andrej Karpathy (30). The specified architectural parameters of this trans-

former implementation include: the number of distinct characters in the author subset, which is

the input size for the embeddings look up table mentioned in 3.4; a maximum context size of 256;

the size of the embedding layer and the number of heads for self attention in each transformer

block are 384 and 6 respectively, since the size of the embedding divided by the number of heads

must be an integer (in this case 384/6 = 64); and, the number of layers, that is the number of trans-

former blocks, was chosen to be 6. I had experimented with using different parameters including

an embedding size of 512 and 8 heads in the transformer blocks, but with the increased size came

an increased time for training without clear increased benefit.

The training methodology to capture author-style was followed as described in the design

section in 3.4. I first trained this transformer on the entire Latin dataset, and then I fine-tuned this

now pre-trained transformer on specific author subsets. However, as mentioned in 4.2, there was

an issue with the lemma tokenizer that caused ‘punc’to be commonplace in the dataset before this

tokenizer was removed. Unfortunately, the pre-trained general Latin transformer model trained on

the entirety of the dataset was tainted by the presence of ‘punc’, which remained present in further

fine-tunings. Thankfully, however, this dataset error was caught before the second methodology

(removing the general pre-training stage and training the transformer solely on a particular author’s

subset of text) to capture an author’s style was completed.

seed_text = "<seed text>".lower()
context_values = encode(seed_text)
context = torch.tensor(context_values, dtype=torch.long, device=device).reshape((
len(context_values),1))
gen =model.generate(context, max_new_tokens=220)[0].tolist()
print(prompt+ decode(gen))

Figure 4.3: The code used to generate new Latin text using the Transformer

Although this transformer does not make use of the Hugging Face Transformers Library, the

dataset preparation, training procedure, and generation stages are all still straightforward. For the

dataset preparation, the encoder and decoder are defined as lambda functions that map the unique

characters to unique numbers and unique numbers to unique characters respectively. The totality

of the author’s subset is encoded accordingly and split into a training set (80% of the subset) and

validation set (20% of the subset). During the training phase, the model again follows a fairly

standard training loop, where batches from the training set are used for the model to learn. Once

the model has been trained on a particular author, the weights are then saved and can be loaded

again for creating future text generation or further fine-tuning. The code for generating can be

seen in Figure 4.3. In principle, this generation code follows the same format as the LatinBERT

4.3. MODELS 35

generation code. The first step is to encode the seed text, then pass the encoded text into the

model to generate the continuation (which is a function written in the class), and lastly decodes

the generated output.

Thus, following the second training methodology (not through any fault of the design of the

first), all the functional requirements are met for the Transformer model.

4.3.3 ChatGPT
ChatGPT required no further training or implementation beyond the scope of the prompts engi-

neering described in 3.5. The only further consideration is whether to use OpenAI’s API to interact

with ChatGPT or whether to interact with the website developed by the company. Both options

were explored independently, but the results are not dependent on the methodology chosen, so for

the sake of usability and ease of replication the project opted to use the website.

ChatGPT passes the functional requirements trivially, as only the primary functional require-

ment is applicable to it and it meets the requirement by being able to generate new Latin text in

what it deems to be the style of a given author.

4.3.4 LLaMA
4.3.4.1 Weights
Before being able to do any experimentation with LLaMA, LLaMA’s weights are required. I filled

out the necessary form requesting access to the LLaMA’s model weights. If a researcher wanted

to recreate the experiments with LLaMA taken in this project, then one would have to request the

weights from Meta themselves6. Thankfully, Meta obliged in providing me LLaMA’s weights,

which allowed me to carry out the proposed methodology from 3.6.4.

4.3.4.2 Latin Approach Inspired by Alpaca LoRA
Recall that for LLaMA the proposed methodology involved mimicking the Alpaca experiment

by the Stanford researchers by creating a custom self-instruct dataset, based upon the different

author subsets, except, due to hardware constraints, this project would use LoRA to significantly

reduce the number of trainable parameters and therefore also the requirements to perform this

training. Because the custom-designed self-instruct Latin dataset follows the exact same format as

the dataset for Alpaca, the same code for Alpaca-Lora (52) can be run to fine-tune LLaMA (the 7

billion parameter version) but with the datasets swapped.

Unfortunately, the output from this LLaMA model equipped with adapater modules could

not generate new Latin text, but rather just repeated the provided seed text back to the user typ-

ically without any further text. Thus, the LLaMA model following the methodology designed in

3.6.4 does not meet the minimum functional requirements for this project, and therefore will not

contribute text to be included as part of the evaluation.

6The form can be found here:
https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform

Chapter 5

Evaluation

With the design and implementation completed, the only objective that remains is to evaluate and

compare the output of the selected models that met their functional requirements.

5.1 Experimental Design
In authorship attribution, even though it implicitly deals with style by discriminating between

texts, the evaluation is entirely objective. The author attributed to the text either was or was

not the original author, which leaves no room for ambiguous results. The same can not be said

for generating new author-styled text, as there is no defined ground truth to compare the output

with. Tikhonov and Yamshchikov evaluated their proposed model’s generated author-styled text

by creating a survey with two generated pieces of text by each of their four authors as well as two

randomly sampled pieces of text by these authors and giving this survey to fluent English speakers

to complete (46). The participants of the survey for each of the sixteen generated instances of text

could select one of five options (whether it was written by one of the four authors or by a neural

network) (46).

Applying their evaluation approach to this project would be challenging due to the text being

in Latin. Firstly, the authors that were selected in Tikhonov and Yamshchikov (46) were both well-

known to English speakers and stylistically distinct enough that, even if the author were unknown

to the participant, they could likely identify the intended author (the authors had selected William

Shakespeare, Lewis Carol, Bob Marley, and the band MUSE) (46). Furthermore, the population

of English speakers is obviously much larger than the population that can read and write in Latin,

let alone the number of people that can identify the style of particular Latin authors. Another issue

that arises from this population problem is that a random English speaker may be able to identify

the style of an English author without knowing the original work (e.g., an English speaker might

identify text that could be by Shakespeare without being able to cite it directly), but the people that

have specialised in learning Latin to the point of identifying the stylistic nuances between Latin

authors of the same time period will likely know the sampled original author works and therefore

can also identify if the text is new, which would mean all the generated text would be correctly

identified as being written by a neural network.

Although their evaluation methodology cannot be copied directly due to the reasons above,

inspiration can be taken from it to derive a similar evaluation approach. The focus in the method-

ology should shift from trying to see if the general populace can determine which texts are gen-

erated by an author or by a neural network to whether Latinists can identify the intended style in

5.2. SURVEY RESULTS 37

the model-generated texts, the results of which should also provide comparative insight about how

the models perform relative to one another (satisfying the last supporting objective). In order to

evaluate the models comparatively and shift the focus accordingly, I created an anonymous survey

for Latinists, comprised of shuffled texts generated by the working models. Each working model

generates one piece of text per author, resulting in twelve pieces of text overall (since there are

four authors and three models), and for each text there are five options available to the participants

of the survey: the four authors and an unrecognisable option. The inclusion of the unrecognisable

option allows for the surveyed Latinists to select authors only if the style of the text aligns with a

particular author rather than, if it were not included, selecting the best option when none of them

are very good or applicable. Also, after each text in the survey, there is a non-compulsory writing

box for the Latinists to communicate their thoughts on the text above it, as well as a box at the end

for any concluding thoughts across the entirety of the survey.

For this project I was able to enlist the help of Latinists to complete this survey. At the time

of writing, only two Latinists have completed the survey, but there are several other Latinists that

have expressed interest in completing this survey, from whom I am waiting to receive feedback

from.

Another important consideration when generating the text for the survey is the role that the

seed text plays. The seed text, providing a starting point for the rest of the generation, should be

the same for each of the models and for each of the author-styles lest one of the models received

text that biases the model favourably to generating in the style of one of the authors. Consequently,

the seed text should be nondescript and unlikely to have been seen in any of the training data. I

composed the following Latin seed text that falls under both categories: "Olim sapiens vir nomine

Rufo erat", which translates to "Once upon a time there was a wise man named Rufus".

All of the text for the survey in the same shuffled order with the text’s intended author, model

that generated it, and approximate translations, according to Google Translate1, can be found in

the Appendix C.1.

5.2 Survey Results
In this section, the results of the survey described above are tabulated and the comments from the

Latinists in the survey are reviewed. In Table 5.1, accuracy has a slightly different connotation

than in other settings. As explained, since measurement of captured style is subjective, there is no

ground truth per se, so here the accuracy percentage refers to the percentage of times the model’s

intended author-styled generated text was identified by the Latinists.

Survey Results
Model Accuracy for

Cicero
Accuracy for
Caesar

Accuracy for
Vergil

Accuracy for
Ovid

Total
Accuracy

Transformer 50 % 100 % 0 % 0 % 37.5 %
LatinBERT 100 % 100 % 0 % 0 % 50 %
ChatGPT 50 % 100 % 0 % 0% 37.5 %

Table 5.1: Results from the Evaluation Survey

1https://translate.google.co.uk

5.2. SURVEY RESULTS 38

Comments from the Survey : In addition to the above table, there were a few comments that pro-

vided further insight into the determinations made by the Latinists. For instance, for ChatGPT’s

attempted Caesar, the Latinists remarked on the use of the superlative being indicative of Caesar’s

style, and another remarking that it was "like Caesar’s style but its syntax is too simplistic". As

will be expanded upon in the next paragraph, it is clear from the table that the models did a poor

job of recreating the style of the poets (Vergil and Ovid), but,interestingly, for the transformer’s

generation of text in the style Vergil the Latinists left somewhat opposing comments. One com-

mented that the vocabulary reminds them of Ovid and there are "dactylic runs" (a term referring to

a metrical pattern), whereas the other comment remarked about the similarity to Cicero due to the

’ut’ clause. There was also one final concluding comment, remarking that some of these passages

were basic and devoid of markers.

Interpretation of Results : There are a few conclusions that can be drawn from the survey results.

Immediately, it is apparent that the models perform better on the prose (Cicero and Caesar) than

on the poetry (Vergil and Ovid), and there are potentially many reasons for this. For LatinBERT

and for the Transformer, the models were trained on data that had the newline character removed,

and so the generated text, even if it might resemble one of the poet’s style, will appear as prose,

which was reflected in the comment above — after remarking on the "dactylic runs", the Latinist

pointed out that it seemed to be prose rather than poetry. Another explanation for these results are

that the Caesar and Cicero simply have more unique and identifiable styles than the poets or from

each other. What is interesting, however, is that the struggle of generating new text in the style of

poets persists in ChatGPT’s generation.

Furthermore, it is interesting that ChatGPT had the same overall accuracy as the newly trained

transformer with a very limited dataset and worse accuracy than the fine-tuned LatinBERT model.

But given that a stronger divide appears to be along prose versus poetry rather than model against

any other particular model, the effectiveness of the models’ ability to generate comparatively is

somewhat ambiguous. Moreover, since there were only two Latinists so far to evaluate and only

one text sample per author was generated, these numbers are not definitive even if they still give

some initial credence to the divide of prose versus poetry.

Interestingly, the results do also show that the methodology of training solely on these author

subsets — rather than pretraining and then fine-tuning on the authorial subsets — was sufficient

to produce text recognisably in the style of prose author using a character-level transformer.

Chapter 6

Discussion, Conclusion, and Future Work

6.1 Discussion
With the continued emergence and prominence of Large Language Models, natural language gen-

eration is a very exciting and active area of research. Despite this surge of interest in language

generation, however, the study of generating author-styled text is still fairly barren. This project

sought to add to the field of author-styled text generation and to the study of low-resource lan-

guages by generating author-styled text in Latin using three different types of models: a newly

trained transformer, a fine-tuned pre-trained model (LatinBERT), and Large Language Models

(ChatGPT and LLaMA). Many challenges were faced along the way, some more successfully met

than others.

Limitations : One of the first limitations encountered was in the preparation of the dataset. It

is true that Latin is a low-resource language, but the dataset was missing text. In order not to

have any duplicate texts, only one author from one source of data was permitted into the unified

dataset. A better approach would have been to accept all the works from every author and remove

duplicates by finding similar works of the same author using the Levenshtein distance (9).

The dataset not only limited the amount of text available for the project to utilise, but it also

adversely affected the transformer directly in two ways. Firstly, as noted in 4.3.2, the inclusion of

the tokenizer that converted some of the punctuation to ‘punc’ resulted in generation that included

‘punc’, and, therefore, the first proposed methodology of 3.4 was not pursued. The second way

the dataset directly affected the transformer was by removing the new-line character from all

the text, which made all the poems effectively prose in the dataset and in generation. Another

possible limitation for the transformer was the choice of encoding used. Instead of defaulting

to the simplest to understand (each character being a unique number), it may have been worth

exploring more alternatives.

An obvious limitation found was the methodology for LLaMA as explained in 4.3.4.2, which

effectively meant that LLaMA was unable to generate any Latin text after the provided seed text.

Since it was unable to sufficiently generate Latin text, the only Large Language Model that was

included for the comparison of the generated text was ChatGPT.

ChatGPT may also have been limited by my prompts. Given that the quality of the text

it generates can differ greatly based on the quality of the prompt written, it is possible that my

prompts were hindering it from producing better quality author-styled text.

The largest limiting factor in this research project, however, was undoubtedly the number of

6.2. FUTURE WORK 40

competent Latinists available to evaluate the generated text. Even though the first survey responses

are indicative of the divide between poetry and prose, the results, particularly with regards to the

varying effectiveness of the different models, are less conclusive than desirable because there were

only two responders.

Successes Whilst there are clear areas for improvement as outlined, the project was successful.

Most notably, this project is the first approach to computationally generate author-styled Latin

text, and, more generally, it is one of the few research endeavours focused specifically on author-

styled research.

The most surprising success was the effectiveness of the sole transformer-based approach.

Although the transformer encoder was listed as a potential limitation above, the transformer was

remarkably successful at learning an author’s style, given the simplicity of its design and the

amount of data it had available for training. Being able to quickly fine-tune a model that, according

to Table 5.1, is able to generate author-styled text with the same effectiveness as ChatGPT, even if

not ChatGPT’s design, and that can be run on consumer hardware is an achievement.

6.2 Future Work
Encountering both limitations and some exciting ideas, which were not able to come to fruition

within the scope of the project, there is a lot of groundwork for future research to build upon.

The most critical way to improve this research is by increasing the number of Latinists to fill

out the survey — this will happen in the immediate future, as the remaining ones from my project

fill it out, but it would be good to generate more text for evaluation and have more evaluators.

Future work should also address the faults of the methodology with LLaMA and devise new

better-suited ways to either fine-tune the model or perform few-shot learning approaches. Yes, this

future work is primarily to address the limitations of the methodology employed here, but the use

of LLaMA for interesting research encourages Meta and other companies to continue facilitating

open-source modelling, which can only be a net positive for the research community.

The same experiments should also be run again, but this time with the inclusion of the newline

character to see if that is what was holding the transformer and LatinBERT back from producing

author-styled poetry.

Lastly, it would be interesting to apply the methods discussed in LatinBERT (18) about in-

tertextuality as seen in 2.3.2.1 to model’s generations. This approach would enable a researcher to

determine which of the author’s texts, if any, the hallucinated generations are loosely or directly

based upon.

6.3 Conclusion
By setting specific objectives at the start of this project in 1.2, it is now possible to assess how

successful the project has been by examining if these goals were met. The primary objective,

which was to effectively generate author-styled Latin text, is difficult to assess because the models

were seemingly able to successfully generate prose in identifiable authorial styles but struggled

with author-styled poetry. The secondary objective of comparing the effectiveness of the three

types of models for generation was achieved, as the experiments were run across different specified

types of language models with the results in Table 5.1. This, of course, was only possible because

the supporting objectives listed in 1.2 were also achieved.

6.3. CONCLUSION 41

Author-styled text generation is a niche discipline in natural language generation, and, as

far as I know, this is the first work on author-styled Latin text generation. Despite the setbacks

and limitations, the project and its results were exciting and laid the foundation for interesting

future work on the subject. It is said that Vergil once addressed criticism about imitating Homer

by saying "it is easier to steal Hercules’ club from him than a line from Homer" (36); I can now

confidently say it is also not so easy to steal a line from Vergil.

Bibliography

[1] (2023). https://en.wikipedia.org/wiki/Prompt_engineering.

[2] (2023). https://huggingface.co/docs/transformers/index.

[3] (2023a). Classical latin. https://en.wikipedia.org/wiki/Classical_Latin.

[4] (2023b). Contemporary latin. https://en.wikipedia.org/wiki/Contemporary_Latin.

[5] (2023c). Ecclesiastical latin. https://en.wikipedia.org/wiki/Ecclesiastical_Latin.

[6] (2023d). Late latin. https://en.wikipedia.org/wiki/Late_Latin.

[7] (2023e). Latin. https://en.wikipedia.org/wiki/Latin.

[8] (2023f). Latin literature. https://en.wikipedia.org/wiki/Latin_literature.

[9] (2023). Levenshtein distance. https://en.wikipedia.org/wiki/Levenshtein_distance.

[10] (2023g). Medieval latin. https://en.wikipedia.org/wiki/Medieval_Latin.

[11] (2023h). Old latin. https://en.wikipedia.org/wiki/Old_Latin.

[12] (2023i). Prosody (latin). https://en.wikipedia.org/wiki/Prosody_(Latin).

[13] (2023). Reddit post. https://www.reddit.com/r/latin/comments/1122szc/.

[14] (2023). Stylometry. https://en.wikipedia.org/wiki/Stylometry.

[15] (2023j). Vulgar latin. https://en.wikipedia.org/wiki/Vulgar_Latin.

[16] (2023k). Wikipedia’s latin grammar. https://en.wikipedia.org/wiki/Latin_grammar.

[17] Adebayo, G. and Yampolskiy, R. (2022). Estimating intelligence quotient using stylometry

and machine learning techniques: A review. Big Data Mining and Analytics, 5:163–191.

[18] Bamman, D. and Burns, P. J. (2020). Latin BERT: A contextual language model for classical

philology. CoRR, abs/2009.10053.

[19] Behr, R. (2022). Latin authorship attribution. CS4040 Mini-Research Project.

[20] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,

Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T.,

Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,

Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever,

I., and Amodei, D. (2020). Language models are few-shot learners. CoRR, abs/2005.14165.

[21] Cho, K. (2019). Bert has a mouth and must speak, but it is not an mrf.

https://kyunghyuncho.me/bert-has-a-mouth-and-must-speak-but-it-is-not-an-mrf/.

[22] Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). BERT: pre-training of deep

bidirectional transformers for language understanding. CoRR, abs/1810.04805.

[23] Gonçalo Oliveira, H. (2017). A survey on intelligent poetry generation: Languages, features,

techniques, reutilisation and evaluation. In Proceedings of the 10th International Conference

on Natural Language Generation, pages 11–20, Santiago de Compostela, Spain. Association

for Computational Linguistics.

BIBLIOGRAPHY 43

[24] Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., and Chen, W. (2021). Lora:

Low-rank adaptation of large language models. CoRR, abs/2106.09685.

[25] Ison, D. (2020). Detection of online contract cheating through stylometry: A pilot study.

Online Learning, 24.

[26] Jiménez, R. (2021). Shakespeare by the numbers: What stylometrics can and cannot tell

us. https://shakespeareoxfordfellowship.org/shakespeare-by-the-numbers-what-stylometrics-

can-and-cannot-tell-us/.

[27] Jin, D., Jin, Z., Hu, Z., Vechtomova, O., and Mihalcea, R. (2020). Deep learning for text

style transfer: A survey. CoRR, abs/2011.00416.

[28] Johnson, K. P., Burns, P. J., Stewart, J., Cook, T., Besnier, C., and Mattingly, W. J. B. (2021).

The Classical Language Toolkit: An NLP framework for pre-modern languages. In Proceed-

ings of the 59th Annual Meeting of the Association for Computational Linguistics and the

11th International Joint Conference on Natural Language Processing: System Demonstrations,

pages 20–29, Online. Association for Computational Linguistics.

[29] Juola, P. (2017). Detecting contract cheating via stylometric methods. pages 187–198.

[30] Karpathy, A. (2023). Let’s build gpt: From scratch, in code, spelled out.

https://www.youtube.com/watch?v=kCc8FmEb1nY.

[31] Kundu, R. (2022). The beginner’s guide to contrastive learning.

https://www.v7labs.com/blog/contrastive-learning-guide.

[32] Lin, S., Wang, W., Yang, Z., Liang, X., Xu, F. F., Xing, E., and Hu, Z. (2020). Data-to-text

generation with style imitation.

[33] Liu, H., Guo, W., Chen, Y., and Li, X. (2022). Contrastive learning enhanced author-style

headline generation. https://arxiv.org/abs/2211.03305.

[34] Magueresse, A., Carles, V., and Heetderks, E. (2020). Low-resource languages: A review of

past work and future challenges. CoRR, abs/2006.07264.

[35] Meader, C. L. (1905). Types of sentence structure in latin prose writers. Transactions and

Proceedings of the American Philological Association, 36:32–51.

[36] Morgan, L. (2015). Virgil, hardly trying. https://llewelynmorgan.com/2015/02/23/virgil-

hardly-trying/.

[37] Nutting, H. C. (1926). Reviewed work: Latin prose composition. The Classical Journal,

22(1):66–69.

[P] P, B. What stylistic features should you be looking out for when analysing latin po-

etry? https://www.mytutor.co.uk/answers/5416/A-Level/Latin/What-stylistic-features-should-

you-be-looking-out-for-when-analysing-Latin-poetry/.

[39] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,

Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani,

A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2023). Pytorch: An

imperative style, high-performance deep learning library. In Advances in Neural Information

Processing Systems 32, pages 8024–8035. Curran Associates, Inc.

[40] Ramnial, H., Panchoo, S., and Pudaruth, S. (2016). Authorship attribution using stylom-

etry and machine learning techniques. In Berretti, S., Thampi, S. M., and Srivastava, P. R.,

editors, Intelligent Systems Technologies and Applications, pages 113–125, Cham. Springer

BIBLIOGRAPHY 44

International Publishing.

[41] Richards, O. (2022). A simple guide to the 7 types of latin.

https://storylearning.com/learn/latin/latin-tips/types-of-latin.

[42] Singh, H., Verma, G., Garimella, A., and Srinivasan, B. V. (2021). Drag: Director-generator

language modelling framework for non-parallel author stylized rewriting.

[43] Sohn, D.-N., Lee, J.-T., and Rim, H.-C. (2009). The contribution of stylistic information to

content-based mobile spam filtering. pages 321–324.

[44] Syed, B., Verma, G., Srinivasan, B. V., Natarajan, A., and Varma, V. (2019). Adapting

language models for non-parallel author-stylized rewriting. CoRR, abs/1909.09962.

[45] Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X., Guestrin, C., Liang, P., and

Hashimoto, T. B. (2023). Alpaca: A strong, replicable instruction-following model.

https://crfm.stanford.edu/2023/03/13/alpaca.html.

[46] Tikhonov, A. and Yamshchikov, I. P. (2018). Guess who? multilingual approach for the

automated generation of author-stylized poetry. CoRR, abs/1807.07147.

[47] Toshevska, M. and Gievska, S. (2022). A review of text style transfer using deep learning.

IEEE Transactions on Artificial Intelligence, 3(5):669–684.

[48] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B.,

Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lample, G. (2023).

Llama: Open and efficient foundation language models.

[49] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and

Polosukhin, I. (2017). Attention is all you need. CoRR, abs/1706.03762.

[50] Wang, A. and Cho, K. (2019). BERT has a mouth, and it must speak: BERT as a markov

random field language model. CoRR, abs/1902.04094.

[51] Wang, C., Cho, K., and Gu, J. (2019). Neural machine translation with byte-level subwords.

CoRR, abs/1909.03341.

[52] Wang, E. J. (2023). Tloen/alpaca-lora: Instruct-tune llama on consumer hardware.

https://github.com/tloen/alpaca-lora.

[53] Wikibooks (2022). Latin/stylistic features of latin verse and prose.

https://en.wikibooks.org/w/index.php?title=Latin/Stylistic_Features_of_Latin_Verse_and_Prose.

[54] Yang, C., Sun, M., Yi, X., and Li, W. (2018). Stylistic Chinese poetry generation via unsu-

pervised style disentanglement. In Proceedings of the 2018 Conference on Empirical Methods

in Natural Language Processing, pages 3960–3969, Brussels, Belgium. Association for Com-

putational Linguistics.

Appendix A

User Manual

The User Manual will walk through the process of running the code used in the project. This

project also made use of ChatGPT, which the User Manual does not walk through in great detail.

In short, to use ChatGPT as it was done in this project, go to chat.openai.com/, create or sign

into an existing account, and then follow the prompting methodology as described explicitly in

3.5.

The rest of the manual walks through the process of running the models and experiments

done for the Transformer and LatinBERT.

A.1 Requirements
After obtaining a copy of the source code for this project, which is best done through its GitHub

Repository: https://github.com/SufurElite/LatinNLG. There are two software prerequi-

sites for this project:

• Python 3.9 : Although it other versions of Python 3 may be able to run the code, the version

of Python throughout this project has specifically been 3.9.16.

• Anaconda : Anaconda is a useful package manager, which can also be used to install

Python. Anaconda can be installed through its download page here: https://www.

anaconda.com/download. Moreover, the reason why we wish to install Anaconda in par-

ticular is because some of the project’s code uses Jupyter Notebooks, which are runnable

with Anaconda.

Unfortunately, due to the nature of fine-tuning larger models, you may find that your com-

puter does not meet a minimum hardware requirement to fine-tune LatinBERT. It should still be

possible, however, to fine-tune and run the Transformer’s models.

A.2 Create Environment and Install Dependencies
Once the software has been installed, we can immediately make use of Anaconda to create a

self-contained environment for running the project.

1. Open a terminal, if using a unix based machine, or open the Anaconda Prompt on windows.

2. We will want to navigate to wherever you cloned the LatinNLG GitHub repository, which

can be done by entering

chat.openai.com/
https://github.com/SufurElite/LatinNLG
https://www.anaconda.com/download
https://www.anaconda.com/download

A.3. RUNNING THE PROJECT 46

cd "<File Path to LatinNLG>"

3. Now, we create a new Anaconda environment for the project by entering the command

conda create -n python=3.9 LatinNLG pip

which will create an environment using Python 3.9 with pip, Python’s package manager,

called LatinNLG. This should automatically activate the environment, but, if LatinNLG is

not written on the left-hand side of the terminal, you can run the command

conda activate LatinNLG

, which will deactivate whatever the current environment is and activate LatinNLG.

4. Once you are using the LatinNLG environment, we can install all of the library dependencies

used in LatinNLG by entering

pip install -r requirements.txt

5. After the libraries are installed, the only other thing we are missing are the LatinBERT

weights, which can be obtained by entering

cd LatinBERT

./download.sh

cd ..

, which will retrieve the requisite LatinBERT weights and put them in a subdirectory called

latin_bert.

After following those steps, you will have everything needed to begin running the project.

A.3 Running the Project
With the dependencies in order, all the remains is to start the jupyter notebooks.

1. In the same terminal, run the command

jupyter notebook

, which will start a local server and open a webpage that has the files from the directory

available.

A.3. RUNNING THE PROJECT 47

2. At this point you can click on either LatinBERT-FineTune.ipynb or LatinTransformerFine-

Tune.ipynb, depending on what you would like to run.

Each notebook is modifiable and its code is accompanied by instructions and explanation. If you

wish to fine-tune LatinBERT, then you can do so through the notebook by changing the author to

your preferred author and running the cells within the fine-tune section. Likewise, if you then want

to generate new text, at the bottom of that notebook you can load in the weights of a fine-tuned

LatinBERT to generate new text with the prompt of your choosing.

If you want to run one of the pre-trained Transformer models from the paper (Caesar, Cicero,

Ovid, or Vergil), you can select the LatinTransformerFineTune notebook, choose your preferred

author and starting text, and similarly generate new text.

If you want to fine-tune a transformer to a Latin author, instead of running the jupyter note-

book, you would open transformer.py in the LatinNLG directory with a text editor and change the

list of authors to your preferred author list. Afterwards, through the same terminal as before you

run

python transformer.py

, which will train and save the weights of the different authors you requested. At this point, you

can now run the jupyter notebook and select the LatinTransformerFineTune notebook to generate

new text with your newly trained weights.

Appendix B

Maintenance Manual

The Maintenance Manual covers how to execute the project’s code, the dependencies and require-

ments for the project, an overview of the different files and their purpose, and directions for future

improvement.

B.1 Setting-up the Development Environment
As this project uses Python, an interpreted rather than compiled language, setting-up the an en-

vironment to modify the code is same process as wanting to run the code, as seen in the User

Manual. It is first required to obtain the code base, which can be done through cloning its GitHub

repository: https://github.com/SufurElite/LatinNLG.

B.1.1 Requirements
The requirements can be divided into hardware and software.

• Hardware: From a hardware perspective, a GPU, whilst not requisite for modifying the

code, will be very useful for fine-tuning the language models, particularly as they grow in

size, because it allows the code to make use of the GPU’s parallel computing.

• Software: Anaconda, a package manager, is a requirement because the project uses Jupyter

notebooks, which allow easy to use virtual environments that let us install the other depen-

dencies for the project in an isolated fashion. Another software requirement is Python 3,

and, although the code might work with other versions of Python, Python 3.9 is recom-

mended — in particular, the version of Python used throughout the project was 3.9.16. Both

the Python and Anaconda requirements can be addressed by installing Python 3 through

Anaconda. Anaconda’s installation package can be found here: https://www.anaconda.

com/download.

After Anaconda is installed, you should open the LatinNLG directory (from the cloned

GitHub Repository) in a terminal or Anconda Prompt and enter the following commands:

conda create -n python=3.9 LatinNLG pip

conda activate LatinNLG

pip install -r requirements.txt

cd LatinBERT

./download.sh

cd ..

https://github.com/SufurElite/LatinNLG
https://www.anaconda.com/download
https://www.anaconda.com/download

B.2. SUMMARY OF FILES 49

These commands will create a Python 3.9 Anaconda virtual environment with the necessary

Python packages installed and will download the LatinBERT weights in the desired location. And,

now running, making any modification, or extending the program can be done.

B.1.2 Running the Project
Once you have met the requirements, you can run the models to generate new text by entering

jupyter notebook

which will create a local server and allow you to select one of the Jupyter notebooks. By open-

ing the LatinBERT-FineTune notebook in the browser, you can generate text from a pre-trained

LatinBERT model or fine-tune the LatinBERT model on an author’s subset. Alternatively, you

can select the LatinTransformerFineTune notebook, which is only set-up for generation of a pre-

trained model at this point. You can fine-tune a transformer model on an author’s subset, however,

by modifying the list of authors in the transformer.py file and running

python transformer.py

B.2 Summary of Files
This section provides a table containing an explanation for every necessary and non-self-

explanatory file in the repository (this excludes __init__.py, text, and image files). Some of the

files are grouped together if it is redundant to have them listed separately (e.g., each of the different

author model weights are grouped together).

Name of the File(s) Its Role

Data/dataExp.py dataExp.py contains the CorpusInterface class, which is used

throughout the research project. The CorpusInterface loads ei-

ther a provided pickled corpus or it creates a new pickled corpus

by associating all the authors of the different Latin corpora to the

author’s works after applying preprocessing techniques. If the

Latin corpora are not downloaded, it will also call the necessary

functions to download them. The Corpus is equipped with differ-

ent auxiliary functions that were designed to extract authors and

their texts in different formats dependent.

Data/fetch.py fetch.py has a function that retrieves the different Latin corpora

and tokenizer models.

Data/plot.py plot.py contains a number of ways to plot information about the

Corpus Interface.

Data/preprocess.py preprocess.py defines a PreProcessor class for the Corpus Inter-

face, and the main utility of the class is to apply the desired pre-

processing techniques to text.

Data/text_corpus.pickle text_corpus.pickle is the most recent serialised corpus object. It’s

the Corpus Interface’s dictionary associating the authors to their

works.

B.3. DIRECTION FOR IMPROVEMENT 50

LatinBERT/download.sh download.sh allows you to download the LatinBERT weights di-

rectly to the repository.

LatinBERT/gen_berts.py gen_berts.py defines the class for LatinBERT and largely follows

the same class definition in the original LatinBERT GitHub page,

but the class definition in the GitHub uses an unsupported ver-

sion of a function from the Hugging Face Transformers Library

whereas this version is compatible with the Hugging Face Trans-

formers Library.

LatinBERT/LatinTok.py LatinTok.py contains the class definition for LatinBERT’s tok-

enizer.

LatinBERT/predict_words.py predict_words.py is used for performing LatinBERT text genera-

tion.

LatinBERT/ (spe-

cial_tokens_map.json,

tokenizer_config.json,

tokenizer.json, and

latin.subword.encoder)

These files all contain information for LatinBERT’s tokenizer and

are necessary to load the tokenizer.

Results/quickshuf.py quickshuf.py is usd to shuffle the model’s generated texts into a

random order for the survey.

Transformer/ ("Au-

thor"_model.pt)

These files, where "Author" can be replaced by any of the authors

in the project, are the weights for the Transformer.

LatinBERT Analysis.ipynb This Jupyter notebook was used to perform initial investigation

into how well LatinBERT does with generating text without any

fine-tuning.

LatinBERT-FineTune.ipynb This Jupyter notebook walks through the process of fine-tuning

and text-generation for LatinBERT.

LatinTransformerFineTune.ipynb This Jupyter notebook walks through the process of generating

new text with the transformer model architecture.

transformer.py transformer.py is the file to train the transformer on particular

author-subsets, which are determined by the authors list near the

start of the file.

Table B.1: A Summary of all the Files

B.3 Direction for Improvement
In this project, there are some immediate areas for improvement that can be addressed quickly:

• Enabling training as well as fine-tuning for the transformer in its notebook. As the

class architecture is already defined, it would only require including a training loop in the

notebook like in the LatinBERT notebook.

• Creating a new pre-trained Latin transformer and then fine-tuning in on author sub-
sets. As the Corpus Interface has been fixed since the first methodology for the transformer

B.3. DIRECTION FOR IMPROVEMENT 51

was attempted (pre-training a transformer on all of the text and then fine-tuning on an au-

thor), it is worthwhile to try again and see if it yields any immediate improvement.

• Including the newline character in the dataset when generating poetry. One of the

results from the survey was that the models struggled with poetry, likely due to the absence

of a newline character, so it is worth seeing if its inclusion improves the poetry generation.

• Designing a user interface for the models. Currently, the models are being run through

a Jupyter notebook or trained on the terminal, but it would be nice to have a clean user

interface without compromising on the functionality.

Appendix C

Generated Output

C.1 Survey Text Generated

Model Intended Author Generation Approximate Translation1

ChatGPT Caesar Olim sapiens vir nomine Rufo erat, qui mul-
tos annos in Gallia commoratus est. Ille tem-
pus suum in studiis et litteris consumebat, sed
postea ad militiam se contulit et ad Caesarem
venit. Illo tempore Caesar in Italia bellum gere-
bat, et Rufo statim se ad eius partes adiunxit.
Cum Caesar in Galliam rediit, Rufo cum eo
venit et multa pro Caesare pugnavit.
Sed Rufo non solum fortis miles sed etiam sapi-
ens vir erat. Semper cum Caesar consilium
capiebat, Rufo ei consilium dabat et multa utilia
suggerebat. Interdum autem cum militibus suis
in castris morabatur et ad eos litteras scribebat.
In una epistula scripsit: "Hoc tempore in Gal-
lia non solum pugnamus sed etiam discimus, ut
postea sapientiores simus."
Ita Rufo non solum fortis miles sed etiam sapi-
ens vir fuit, cuius memoria semper apud milites
Caesaremque carissima fuit.

Once upon a time there was a wise man named
Rufus, who lived many years in Gaul. He spent
his time in studies and literature, but afterwards
he turned to the military and came to Caesar. At
that time Caesar was waging war in Italy, and
Rufus immediately joined his side. When Cae-
sar returned to Gaul, Rufus came with him and
fought many battles for Caesar.
But Rufus was not only a brave soldier but also
a wise man. Whenever Caesar took a decision,
Rufus gave him advice and many useful sugges-
tions. Sometimes he stayed with his soldiers in
the camp and wrote letters to them. In one let-
ter he wrote: "At this time in France we not only
fight but also learn, so that we may be wiser af-
terwards."
Thus Rufus was not only a brave soldier but also
a wise man, whose memory was always dear to
the soldiers and to Caesar.

LatinBERT Caesar olim sapiens vir nomine rufo erat. hic cum equi-
tibus colloqui venit. idem cum suis agit liberius
et magna parte militum disceditur. tum vero
etiam reliquis civitatibus terror et a quibusdam
dissentire videbatur. tum vero ex omnibus civi-
tatibus principes convenerunt

Once upon a time there was a wise man named
Rufus. He came here to talk with the knights.
He does the same with his own people more
freely, and a large part of the soldiers leave. but
then also the rest of the states were alarmed, and
some seemed to disagree. then the princes from
all the states assembled

ChatGPT Cicero Olim sapiens vir nomine Rufo erat, qui in re
publica multos annos honorifice versatus est.
Cum illo tempore res publica maxime turbu-
lenta esset, Rufo saepe Caesarem adversatus
est, ceterosque populares homines fortiter ac-
cusavit.
Sed Rufo non solum eloquentia sed etiam sapi-
entia pollebat, et interdum Caesaris acerbas am-
bitiones vituperabat. Cuius consilia multi viri
boni secuti sunt, et civitas a calamitate servata
est.
Cum autem Rufo in senatum rediret, conspectus
est ut fuit omnium carus et gratus. At non solum
gratiam sed etiam laudem meruit, quod consilio
et virtute rem publicam servavit. Et postea inter
eos qui patriae bene meruerunt numeratus est,
cuius memoria in saecula saeculorum vivet.

Once upon a time there was a wise man named
Rufus, who was honorable for many years in
public affairs. As the state was at that time most
tumultuous, Rufus often opposed Caesar, and
strongly accused the other popular men.
But Rufus excelled not only in his eloquence,
but also in his wisdom, and sometimes re-
proached the bitter ambitions of Caesar. Many
good men followed his advice, and the city was
saved from disaster.
But when Rufus returned to the senate, it was
evident that he was beloved and appreciated by
all. But he earned not only thanks but also
praise, because he preserved the state by his
counsel and courage. And afterwards he was
numbered among those who have done well for
his country, whose memory will live forever.

Transformer Vergil olim sapiens vir nomine rufo erat,otis quos
illius incidit, provolvendum pecudes; at illi
specubus uter corpora tepefant mavora, ut rebus
eurytis subducere claudo et magno de gentes
luctantur longe commortalibus arma.

once upon a time there was a wise man named
Rufus; but he saw how the bodies of the spar-
rows were warmed, so that they might bring
down the lame and great things of the nations,
with their mortal weapons far away.

Transformer Cicero olim sapiens vir nomine rufo erat,ortes moribus
illi operumque bonis severitatem. ita muta-
bunt praesentiri sibi autem populari riges acrio
esse videtur. tu ad philosophisous non hoc
imaginium esse pecuniam: vetteris platonis tum
commendo exstitisse nisi

Once upon a time there was a wise man named
Rufus. so they will change the way they are
presented to him, but it seems that the people’s
rules are keen. You do not think that these im-
ages are money for the philosophers: I recom-
mend to the old Plato that they existed only then

1Approximate translation provided by google translate, https://translate.google.co.uk/

C.2. LATINBERT INITIAL ANALYSIS 53

ChatGPT Vergil Olim sapiens vir nomine Rufo erat, quem Ro-
mae omnes digni laude viri colebant. Inge-
nio doctus, et artibus liberalibus imbutus, Rufo
multas scientias e studio addiscere curavit.
Sed Rufo praecipue poesis cordi erat, et
carmina elegiaca componere sapientissimus ex-
istimabatur. Namque carminibus suis, amoris et
virtutis laudes celebravit, et deorum divina mu-
nia mirabili modo descripsit.
Ingenio praeditus et forma egregia, Rufo mul-
tarum feminarum adulescentiam amorem ad-
ferre poterat. Sed, ne quis eorum amore captus
duceretur, Rufo semper modestissime se gessit
et abstinuit ab omni lascivia.
Inter Graecos versatus, Rufo multa ab eis didicit
et artem poeticam perfecit. Quae tam perfecte
scripsit, ut ea ad aeternitatem pervenirent et
omnes carminibus eius semper laeti essent.

Once upon a time there was a wise man named
Rufus, whom all the worthy men of Rome wor-
shiped. A learned genius, and imbued with lib-
eral arts, Rufus took care to learn many sciences
from study.
But Rufus was particularly fond of poetry, and
was considered the wisest to compose elegiac
poems. For with his songs he celebrated the
praises of love and virtue, and described the di-
vine functions of the gods in a wonderful man-
ner.
Gifted with talent and excellent form, Rufus
was able to bring the love of many young
women. But, in order that no one might be led
astray by their love, Rufus always behaved in
the most modest manner and abstained from all
lasciviousness.
Living among the Greeks, Rufus learned much
from them and perfected the art of poetry. What
he wrote so perfectly that they would reach eter-
nity and all would be happy with his poems for-
ever.

LatinBERT Vergil olim sapiens vir nomine rufo erat sed nunc lu-
mine da nomine dicunt, huic cognomen ; iulius
nomen tuum dicunt : cui gravido cognomen
fuerat, sed aurea nomen, huic cognomen de pa-
tre fuit. cornelio ordine nemo patricigravide
sanguine esse voluerunt.

once upon a time there was a wise man named
Rufus, but now they say give him a name of
light; They say your name is Julius: to whom
it had been a surname when pregnant, but the
name was golden, to this one it was a surname
from his father. In the order of Cornelius, no
one wanted to be of the patriarchal blood.

ChatGPT Ovid Olim sapiens vir nomine Rufo erat, Ingenio
doctus, consiliisque sagax, Linguam callidam,
promptamque ad verba iocosa, Aurea cuius erat
sanguinis origo.
Fortunae motus non impavidus horret, Nec
laudis avidus, nec acri invidia Turbatur, sed in
medio haud inscius urbis Naturae rerum struc-
turam scrutatur.
Mille modis vitae ludens experiensque,
Quaeque canit, natales sua carmina vates
Mutat, et haec illi vitam tam bene ducit, Quod
carmen tantum viveret immortalis.

Once upon a time there was a wise man named
Rufus, Learned wit, and shrewd in counsels, A
clever tongue, ready for witty words, Gold was
the origin of his blood.
The movement of fortune does not tremble fear-
lessly, Neither greedy for praise, nor bitter envy
He was disturbed, but not unconscious in the
middle of the city He examines the structure of
things in nature.
Playing and experiencing a thousand ways of
life, Each of them sings their own birthday
songs He changes, and this leads his life so well,
That song would only live immortal.

LatinBERT Cicero olim sapiens vir nomine rufo erat sed etiam vir
et virtute divina gloria, pompeius, is nimirum
ille quidem, ne consultus quidem, sed tamen
artis suae defensor et temporum dico memoria
dignissimus, omni memoria temporum dignis-
simus, vobis erit iudicio

Once upon a time there was a wise man named
Rufus, but he was also a man of divine glory,
Pompeius, he, of course, was not even a coun-
selor, but still a defender of his art and a teller
of the times, worthy of memory, worthy of all
the memory of the times, he will be judged by
you

Transformer Caesar olim sapiens vir nomine rufo erat, oallis com-
minuti ex oppido prohiberent, ad quam re-
gionem consuevit, et siciliam communicio pos-
set, quod illum ipsi quam celerrebribet, quaeque
esse aut animadverteret se consulerent.

Once upon a time there was a wise man named
Rufus, who, being crushed by all, would stop
from the town, to which country he was accus-
tomed, and could communicate with Sicily, that
they would consult him as quickly as he could,
and whatever he noticed or noticed.

Transformer Ovid olim sapiens vir nomine rufo erat,od patiarer
virgo, nec avers vitiet nivea sub axe, inchisaque
variarum thybri tempus hlarum texta syraco-
rumque implevit aesone, esse mei. adspiciens
ubi iuque complecta lubra licebit; iuppitis ausis
lustravit in undis

Once upon a time there was a wise man named
Rufus, who would suffer as a virgin, nor would
the snow fall under his axe. looking where it
will be possible to embrace the joy; He traveled
the waves with the boldness of a hunter

LatinBERT Ovid olim sapiens vir nomine rufo erat, a gente tua
sumepossedi. de gente syarchesia primus, in
illa divitiis carens bona, nulla domo, et quamvis
osi, tamen uxor, et illi gratus erat ; nec tamen
amissa mansit

Once upon a time there was a wise man named
Rufus, whom I took from your people. He was
the first of the race of the syarches, in that coun-
try lacking in wealth and possessions, and hav-
ing no house, and although he was estranged,
he still had a wife, and she was grateful to him;
and yet he did not remain lost

Table C.1: The generated text included in the Survey

C.2 LatinBERT Initial Analysis

Author Correct Continuation Generated Continuation

C.2. LATINBERT INITIAL ANALYSIS 54

cicero sumus. sed in rebus apertissimis nimium longi sumus.
perfecto enim et concluso neque virtutibus neque amicitiis
usquam locum esse, si ad voluptatem omnia referantur, nihil
praeterea est magnopere dicendum. ac tamen, ne cui loco
non videatur esse responsum, pauca etiam nunc dicam ad
reliquam

sumus. sed in rebus apertissimis nimium longi sumus. per-
fecto enim et concluso neque virtutibus sumus amici amici
amici amici amici nos si sumus amici amici amici sumus si
non nos amici enim ipsi , sumus amici ipsi ipsi ipsi non ipsi
sumus ipsi ipsi

catullus non satis id causae credideram esse tibi. tu satis id duxti:
tantum tibi gaudium in omni culpa est in quacumque est
aliquid sceleris. lesbia mi dicit semper male nec tacet un-
quam de me: lesbia me dispeream nisi amat. quo signo?
quia sunt totidem mea:

non satis id causae credideram esse tibi. tu satis id duxti:
tantum tibi gaudium in credis credis credis credis credis cre-
dis credis non ? credis ? credis credis non , non credis , ,
credis , credis , credis credis credis , credis non ,

catullus ut die periret, saturnalibus, optimo dierum! non, non hoc
tibi, false, sic abibit: nam, si luxerit, ad librariorum curram
scrinia, caesios, aquinos, suffenum, omnia colligam venena,
ac te his suppliciis remunerabor. vos hinc interea valete,
abite illuc unde malum pedem attulistis, saecli incommoda,
pessimi poetae.

ut die periret, saturnalibus, optimo dierum! non, non hoc
tibi, false, sic abibit: nam, si , , , , , , , , , , , , , , , , , , facis
hoc facis , , facis facis , facis , tamen tamen

cicero nuper fuerunt ullum auctorem istius aestimationis. quo me
igitur aut ad quae exempla revocas? ab illis hominibus, qui
tum versati sunt in re publica cum et optimi mores erant
et hominum existimatio gravis habebatur et iudicia severa
fiebant, ad hanc hominum libidinem ac licentiam me

nuper fuerunt ullum auctorem istius aestimationis. quo me
igitur aut ad quae exempla revocas? ab ? ? ? ? ? ? ? ? ? ?
? exempla exempla ? ? exempla ? ? ? ? exempla exempla
exempla ? ? ? ? ? exempla ?

catullus splendent auro atque argento. candet ebur soliis, conlucent
pocula mensae, tota domus gaudet regali splendida gaza.
pulvinar vero divae geniale locatur sedibus in medus, indo
quod dente politum tincta tegit roseo conchyli purpura fuco.
haec vestis priscis hominum variata figuris heroum mira vir-
tutes indicat arte.

splendent auro atque argento. candet ebur soliis, conlucent
pocula mensae, tota domus gaudet regali splendida , , , , ,
, , , , limina , limina , limina limina limina , limina limina
limina limina limina fulgentlimina limina limina , limina
limina limina limina

cicero quae ne traditam quidem atque inculcatam libertatem
recipere possit plusque timeat in puero nomen sublati regis
quam confidat sibi, cum illum ipsum qui maximas opes
habuerit paucorum virtute sublatum videat me vero posthac
ne commendaveris caesari tuo, ne te quidem ipsum, si me
audies. valde

quae ne traditam quidem atque inculcatam libertatem
recipere possit plusque timeat in puero nomen sublati ,
liberati illo liberati ? , liberati , liberi erimus erimus erimus
, erimus erimus erimus erimus , , erimus erimus , erimus
erimus erimus non si erimus non non

cicero senatus in capitolium; parata de circumscribendo adules-
cente sententia consularis, cum repente–nam martiam le-
gionem albae consedisse sciebat–adfertur ei de quarta nun-
tius. quo perculsus abiecit consilium referendi ad senatum
de caesare: egressus est non viis, sed tramitibus paludatus.
ex eo non iter, sed cursus et fuga in

senatus in capitolium; parata de circumscribendo adules-
cente sententia consularis, cum repente–nam martiam le-
gionem albae consedisse omnia omnia illa omnia omnia
facta tum tum tum tum omnia omnia tum , tum tum tum
, , omnia , facta facta facta facta illa tum facta tum facta

vergil ille prior praeeunte carina; parte prior, partem rostro pre-
mit aemula pristis. at media socios incedens nave per ipsos
hortatur mnestheus: "nunc, nunc insurgite remis, hectorei
socii, troiae quos sorte suprema delegi comites; nunc illas
promite vires, nunc animos, quibus in gaetulis syrtibus usi,
ionioque mari

ille prior praeeunte carina; parte prior, partem rostro premit
aemula pristis. at media socios incedens , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , ,

cicero consociati fuistis. nec mirum: agitur enim non qua condi-
cione victuri, sed victurine simus an cum supplicio ig-
nominiaque perituri. quamquam mortem quidem natura
omnibus proposuit; crudelitatem mortis et dedecus virtus
propulsare solet, quae propria est romani generis et semi-
nis. hanc retinete, quaeso, quirites, quam vobis tamquam

consociati fuistis. nec mirum: agitur enim non qua condi-
cione victuri, sed victurine simus an cum nulla est nulla
nulla digna digna digna digna condicione digna , digna , , ,
digna , , condicione , condicione , , condicione non , digna
non digna senatu

ovid putant mentes vos aperire suas. nec tamen hoc falsum: nam,
dis ut proxima quaeque, nunc penna veras, nunc datis ore
notas, tuta diu volucrum proles tum denique caesa est, iu-
veruntque deos indicis exta sui. ergo saepe suo coniunx ab-
ducta marito uritur idaliis alba columba

putant mentes vos aperire suas. nec tamen hoc falsum: nam,
dis ut proxima quaeque, nunc ,
, amat amat , amat amat

cicero scipionem p. scaevolam pontifices maximos, non zenonem
aut cleanthen aut chrysippum sequor, habeoque c. laelium
augurem eundemque sapientem quem potius audiam dicen-
tem de religione in illa oratione nobili quam quemquam
principem stoicorum. cumque omnis populi romani religio
in sacra et in auspicia divisa sit, tertium

scipionem p. scaevolam pontifices maximos, non zenonem
aut cleanthen aut chrysippum sequor, habeoque c. laelium .
.

ovid animo dignaque parque fuit. "pone metum, veni!" coniunx
ait. illa revixit deque viri collo dulce pependit onus. interea
iuvenis furiales regius ignis concipit et caeco raptus amore
furit, forma placet niveusque color flavique capilli, quique
aderat nulla factus ab arte decor; verba placent

animo dignaque parque fuit. "pone metum, veni!" coniunx
ait. illa revixit deque viri collo " " " " " " " " " " " " " " " " "
" " " " " " " " " " " " "

catullus tum thetis humanos non despexit hymenaeos, tum thetidi
pater ipse iugandum pelea sensit. o nimis optato saeclorum
tempore nati heroes, salvete, deum genus, o bona matrum
progenies, salvete iterum vos ego saepe meo, vos carmine
compellabo, teque adeo eximie taedis felicibus aucte thes-
saliae columen peleu,

tum thetis humanos non despexit hymenaeos, tum thetidi
pater ipse iugandum pelea sensit. o nimis , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , ,

vergil trinacriam, et caelum subtexere fumo. noctem illam tecti
silvis immania monstra perferimus, nec quae sonitum det
causa videmus. nam neque erant astrorum ignes, nec lu-
cidus aethra siderea polus, obscuro sed nubila caelo, et lu-
nam in nimbo nox intempesta tenebat. postera iamque dies
primo surgebat eoo,

trinacriam, et caelum subtexere fumo. noctem illam tecti
silvis immania monstra perferimus, nec quae sonitum , , , ,
, , vertice ,

C.2. LATINBERT INITIAL ANALYSIS 55

catullus sonipedibus, ibi somnus excitam attin fugiens citus abiit:
trepidante eum recepit dea pasithea sinu. ita de quiete molli
rapida sine rabie simul ipsa pectore attis sua facta recoluit,
liquidaque mente vidit sine quis ubique foret, animo aestu-
ante rusum reditum ad vada tetulit. ibi maria vasta

sonipedibus, ibi somnus excitam attin fugiens citus abiit:
trepidante eum recepit dea pasithea sinu. ita , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , vos ,

cicero habeant sapientiae nomen et invidiosum et obscurum, con-
cedant ut viri boni fuerint. ne id quidem facient; negabunt id
nisi sapienti posse concedi. agamus igitur pingui, ut aiunt,
minerva. qui ita se gerunt, ita vivunt, ut eorum probetur
fides integritas aequitas liberalitas, nec sit in eis

habeant sapientiae nomen et invidiosum et obscurum, con-
cedant ut viri boni fuerint. ne id quidem mihi quidem fort-
asse fortasse fortasse fortasse fortasse fortasse fortasse for-
tasse fortasse fortasse fortasse fortasse fortasse fortasse .
fortasse fortasse fortasse fortasse fortasse fortasse fortasse
fortasse fortasse fortasse fortasse fortasse .

catullus mulier: sed tu horum magnos vicisti sola furores, ut semel
es flavo conciliata viro. aut nihil aut paulo cui tum con-
cedere digna lux mea se nostrum contulit in gremium, quam
circumcursans hinc illinc saepe cupido fulgebat crocina
candidus in tunica. quae tamenetsi uno non est

mulier: sed tu horum magnos vicisti sola furores, ut semel
es flavo conciliata viro. aut te , , , non nunc , nunc te , nunc
, nunc , nunc , nunc , nunc , te , nunc , , , , , , ,

catullus specus, nympha quos super irrigat frigerans aganippe, ac
domum dominam voca coniugis cupidam novi, mentem
amore revinciens ut tenax hedera huc et huc arborem im-
plicat errans. vosque item simul, integrae virgines, quibus
advenit par dies, agite in modum dicite, "o hymenaee hy-
men, o hymen hymenaee."

specus, nympha quos super irrigat frigerans aganippe, ac
domum dominam voca coniugis cupidam novi, mentem , , ,
, , , , , venus venus , venus venus , venus venus , venus venus
, venus , venus venus venus venus venus , venus venus

catullus transfer omine cum bono limen aureolos pedes, rasilemque
subi forem. o hymen hymenaee io, o hymen hymenaee. ad-
spice unus ut accubans vir tuus tyrio in toro totus immineat
tibi. o hymen hymenaee io, o hymen hymenaee. illi non
minus ac tibi pectore uritur intimo flamma,

transfer omine cum bono limen aureolos pedes, rasilemque
subi forem. o hymen hymenaee io, o , , , , , , , , , , , , , ,
, , nupta, , , , faceface face, faceface , face, faces facefaces
faces faces faces

jerome iacob sicut superbiam israhel quia vastatores dissipaverunt
eos et propagines eorum corruperunt; clypeus fortium eius
ignitus viri exercitus in coccineis igneae habenae currus in
die praeparationis eius et agitatores consopiti sunt; in itiner-
ibus conturbati sunt quadrigae conlisae sunt in plateis as-
pectus eorum quasi lampades quasi

iacob sicut superbiam israhel quia vastatores dissipaverunt
eos et propagines eorum corruperunt; clypeus fortium eius
et et et cor et et ipse ipse ipse ipse ipse ipse ipse ipse est ipse
ipse ipse est ipse ipse et est ipse est et et est et fortitudo

jerome a facie eius omnis terra; oratio abacuc prophetae pro igno-
rationibus; domine audivi auditionem tuam et timui domine
opus tuum in medio annorum vivifica illud in medio anno-
rum notum facies cum iratus fueris misericordiae record-
aberis; deus ab austro veniet et sanctus de monte pharan
semper operuit

a facie eius omnis terra; oratio abacuc prophetae pro igno-
rationibus; domine audivi auditionem tuam et gloriam glo-
riam gloriam gloriam gloriam gloriam accipiet gloriam glo-
riam gloriam gloriam gloriam gloriam gloriam gloriam ac-
cipiet accipiet gloriam et gloriam gloriam gloriam gloriam
gloriam gloriam gloriam gloriam gloriam accipiet gloriam

jerome spiritu promissionis sancto; qui est pignus hereditatis nos-
trae in redemptionem adquisitionis in laudem gloriae ip-
sius; propterea et ego audiens fidem vestram quae est in
domino iesu et dilectionem in omnes sanctos; non cesso
gratias agens pro vobis memoriam vestri faciens in ora-
tionibus meis; ut deus

spiritu promissionis sancto; qui est pignus hereditatis nos-
trae in redemptionem adquisitionis in laudem gloriae ipsius;
qui etiam ipse est pater noster et pater noster et pater noster
et pater noster et pater noster in , , , , , fratribus ecclesiis
fratribus , fratribus fratribus

vergil manibus tendit divellere nodos, perfusus sanie vittas atroque
veneno, clamores simul horrendos ad sidera tollit: quales
mugitus, fugit cum saucius aram taurus, et incertam excus-
sit cervice securim. at gemini lapsu delubra ad summa dra-
cones effugiunt saevaeque petunt tritonidis arcem, sub ped-
ibusque deae clipeique sub orbe

manibus tendit divellere nodos, perfusus sanie vittas atroque
veneno, clamores simul horrendos ad sidera tollit: , , , , , , ,
, , , , , , , , , , , , ferro , ferro , , ferro , manibus , ferro ,

ovid cum sine nubibus ar, nec tepidus pluvias concitat auster
aquas: ecce, tibi similis, quae quondam phrixon et hellen
diceris inois eripuisse dolis; hic undas imitatur, habet
quoque nomen ab undis: crediderim nymphas hac ego veste
tegi. ille crocum simulat: croceo velatur amictu, roscida
luciferos cum

cum sine nubibus ar, nec tepidus pluvias concitat auster
aquas: ecce, tibi similis, quae quondam est venit . venit
venit . venit venit . venit venit . . venit venit . venit venit
venit , .

cicero armis pellendum a suis moenibus censuissent. qua re nolite
mihi ista nomina civitatum nobilium opponere; quos enim
hostis haec familia contempsit, numquam eosdem testis per-
timescet. vobis autem est confitendum, si consiliis prin-
cipum vestrae civitates reguntur, non multitudinis temeri-
tate, sed optimatium consilio bellum ab istis civitatibus

armis pellendum a suis moenibus censuissent. qua re nolite
mihi ista nomina civitatum nobilium opponere; . potius . . .
.

ovid ille suus!" est via, quae populum laurentes ducit in agros,
quondam dardanio regna petita duci: illa lanigeri pecoris
tibi, termine, fibris sacra videt fieri sextus ab urbe lapis, gen-
tibus est aliis tellus data limite certo: romanae spatium est
urbis et orbis idem. nunc

ille suus!" est via, quae populum laurentes ducit in agros,
quondam dardanio regna petita " " " " " " " " " " " " " " " " "
" " " " " " " " " " " " "

cicero non contemnabamus sed non pertimescebamus. hominum
quidem summa erga nos studia significabantur; sed prorsus
vitae taedet; ita sunt omnia omnium miseriarum plenissima.
modo caedem timueramus +que oratio fortissimi senis, q.
considi, discusserat ea inquam cotidie timere potueramus+,
subito exorta est. quid quaeris? nihil me infortunatius,

non contemnabamus sed non pertimescebamus. hominum
quidem summa erga nos studia significabantur; sed prorsus
vitae qui erant qui erant erant qui qui non erant non non qui
qui erant non qui non erant non non non non non erant non
qui erant non non non

ovid criminibus falsis insimulasse virum! nuper ab haemoniis
hospes mihi thessalus oris venit et, ut tactum vix bene li-
men erat, ’aesonides,’ dixi, ’quid agit meus?’ ille pudore
haesit in opposita lumina fixus humo. protinus exilui tu-
nicisque a pectore ruptis ’vivit? an,’ exclamo, ’me quoque
fata vocant?’

criminibus falsis insimulasse virum! nuper ab haemoniis
hospes mihi thessalus oris venit et, ut tactum est , . , , , , , , ,
, , , , , , , , , , , , , , , , , , est est

C.2. LATINBERT INITIAL ANALYSIS 56

vergil instat, arcebis gravido pecori, armentaque pasces sole re-
cens orto aut noctem ducentibus astris. post partum cura
in vitulos traducitur omnis, continuoque notas et nomina
gentis inurunt et quos aut pecori malint submittere habendo
aut aris servare sacros aut scindere terram et campum hor-
rentem fractis invertere

instat, arcebis gravido pecori, armentaque pasces sole
recens orto aut noctem ducentibus astris. post par-
tum , pecoripecori pecoripecori pecoripecori pecoripecori
pecoripecori pecoripecori pecori, pecoripecori pecoripecori
pecori, pecoripecori , , pecoripecori pecoripecori pecori,
pecoripecori pecoripecori pecori, pecori, pecoripecori
pecoripecori pecoripecori pecoripecori , , , , ,

catullus indistinctis plexos tulit ipse corollis, quo permulsa do-
mus iucundo risit odore. confestim penios adest, viri-
dantia tempe, tempe quae silvae cingunt super impen-
dentes, naiasin linquens doris celebranda choreis, non vac-
uus: namque ille tulit radicitus altas fagos ac recto proceras
stipite laurus, non sine nutanti platano lentaque

indistinctis plexos tulit ipse corollis, quo permulsa domus
iucundo risit odore. confestim penios adest, viridantia , , , ,
, ,

vergil an nympharum sanguinis una?— sis felix, nostrumque
leves, quaecumque, laborem, et, quo sub caelo tandem,
quibus orbis in oris iactemur, doceas. ignari hominumque
locorumque erramus, vento huc vastis et fluctibus acti:
multa tibi ante aras nostra cadet hostia dextra." tum venus:
"haud equidem tali me

an nympharum sanguinis una?— sis felix, nostrumque
leves, quaecumque, laborem, et, quo sub caelo tandem, ,
, , , , , , , , , , , , , , , , , , te , , , , , , te , te te

catullus condita quin veri pectoris evoluam) non his tam laetor re-
bus quam me afore semper afore me a dominae vertice dis-
crucior, quicum ego, dum virgo quondam fuit, omnibus ex-
pers unguentis, una milia multa bibi. nunc vos optato quom
iunxit lumine taeda, non prius unanimis corpora coniugibus

condita quin veri pectoris evoluam) non his tam laetor rebus
quam me afore semper afore , te
, , , , , ,

catullus penelopeo. claudite ostia, virgines: lusimus satis. at, boni
coniuges, bene vivite et munere adsiduo valentem exercete
iuventam. vesper adest: iuvenes, consurgite: vesper olympo
exspectata diu vix tandem lumina tollit. surgere iam tem-
pus, iam pinguis linquere mensas; iam veniet virgo, iam
dicetur hymenaeus. hymen o

penelopeo. claudite ostia, virgines: lusimus satis. at, boni
coniuges, bene vivite et munere adsiduo valentem
. . > > > > < > > > > > > > > > > < > > > > >

jerome indigetis ut scribamus vobis; ipsi enim diligenter scitis quia
dies domini sicut fur in nocte ita veniet; cum enim dixerint
pax et securitas tunc repentinus eis superveniet interitus si-
cut dolor in utero habenti et non effugient; vos autem fratres
non estis in tenebris ut vos

indigetis ut scribamus vobis; ipsi enim diligenter scitis quia
dies domini sicut fur in nocte veniet ; sed vos qui estis in
vobis , et ; semper sicut rogamus rogamus vos vos roga-
mus invicem rogamus rogamus rogamus rogamus rogamus
rogamus sicut rogamus vos rogamus rogamus

jerome et eunuchi nuntiaveruntque ei quod audiens consternata
est et misit vestem ut ablato sacco induerent eum quam
accipere noluit; accitoque athac eunucho quem rex min-
istrum ei dederat praecepit ut iret ad mardocheum et dis-
ceret ab eo cur hoc faceret; egressusque athac ivit ad mar-
docheum stantem

et eunuchi nuntiaveruntque ei quod audiens consternata est
et misit vestem ut ablato sacco induerent , , , , , , , missa ,
missa missa missa missa , missa missa missa missa missa
missa missa missa missa missa missa missa missa missa
missa missa

ovid nec se putat ille secundum, tu votis obstas illius, ille tuis.
ipsa velut navis iactor quam certus in altum propellit boreas,
aestus et unda refert, cumque dies caris optata parentibus
instat, inmodicus pariter corporis ardor adest — ei mihi, co-
niugii tempus crudelis ad

nec se putat ille secundum, tu votis obstas illius, ille tuis.
ipsa velut navis iactor . , , , , , . , , . , , amat amat amat ,
amat nec amat amat amat amat amat amat amat amat . amat
nec nec

ovid vere nitent terrae, vere remissus ager, nunc herbae rupta tel-
lure cacumina tollunt, nunc tumido gemmas cortice palmes
agit. et formosa venus formoso tempore digna est, utque
solet, marti continuata suo est: vere monet curvas materna
per aequora puppes ire nec hibernas iam timuisse minas.

vere nitent terrae, vere remissus ager, nunc herbae rupta
tellure cacumina tollunt, nunc tumido gemmas . frigor.
frigorfrigor frigorfrigor frigorfrigor siderefrigor frigorfrigor
siderefrigor siderefrigor sidere. frigorsidere sidere. sidere. .
tempora tempora tempora . tempora tempora tempora tem-
pora tempora tempora tempora .

catullus multis, mihi candida, longa, recta est. haec ego sic singula
confiteor, totum illud "formosa" nego: nam nulla venustas,
nulla in tam magno est corpore mica salis. lesbia formosa
est, quae cum pulcherrima tota est, tum omnibus una omnis
subripuit veneres. nulla potest mulier tantum

multis, mihi candida, longa, recta est. haec ego sic singula
confiteor, totum illud "formosa" nego: , , , , , , , , , " , " , " "
" " " " " " " " " " " " " " "

cicero atque altissimum gradum civitatis. quae quidem mea cohor-
tatio ne tibi inanis aut sine causa suscepta videatur, illa me
ratio movit, ut te ex nostris eventis communibus admonen-
dum putarem, ut considerares, in omni reliqua vita quibus
crederes, quos caveres. quod scribis te velle scire, qui sit

atque altissimum gradum civitatis. quae quidem mea cohor-
tatio ne tibi inanis aut sine causa suscepta aut aut tueri tueri
non non aut non tueri non non aut non non non ea possem
tueri facile non non possem facile aut non facile non facile
non non

catullus ego certe cognoram a parva virgine magnanimam. anne
bonum oblita es facinus, quo regium adepta es coniugium,
quod non fortior ausit alis? sed tum maesta virum mittens
quae verba locuta es! iuppiter, ut tristi lumina saepe manu !
quis te mutavit tantus deus? an quod

ego certe cognoram a parva virgine magnanimam. anne
bonum oblita es facinus, quo regium adepta me , me , , ,
, , , , , , , , , , , , , , , , miserum miserum miserum miserum
miserum miserum miserum ,

cicero ad rem pertinere putabat, scriptores illos male mulcatos
exisse cum galba; ex quo significabat illum non in agendo
solum, sed etiam in meditando vehementem atque incensum
fuisse. quid multa? magna exspectatione, plurimis audien-
tibus, coram ipso laelio sic illam causam tanta vi tantaque
gravitate dixisse

ad rem pertinere putabat, scriptores illos male mulcatos
exisse cum galba; ex quo significabat se dixisse dixisse ver-
bis verbis nihil nihil verbis verbis verbis verbis pluribus
pluribus nihil verbis dixisse pluribus dixisse nihil dixisse
dixisse nihil nihil nihil se dixisse dixisse dixisse , dixisse

ovid "hoc, ubi nunc fora sunt, udae tenuere paludes; amne re-
dundatis fossa madebat aquis. curtius ille lacus, siccas qui
sustinet aras, nunc solida est tellus, sed lacus ante fuit. qua
velabra solent in circum ducere pompas, nil praeter salices
cassaque canna fuit; saepe

"hoc, ubi nunc fora sunt, udae tenuere paludes; amne redun-
datis fossa madebat aquis. curtius ille , , , , , , , , , , , , moenia
, , moenia , , , , , moenia moenia , moenia , , , moenia ,

C.2. LATINBERT INITIAL ANALYSIS 57

jerome meae consumptis carnibus adhesit os meum et derelicta sunt
tantummodo labia circa dentes meos; miseremini mei mis-
eremini mei saltim vos amici mei quia manus domini tetigit
me; quare persequimini me sicut deus et carnibus meis sat-
uramini; quis mihi tribuat ut scribantur sermones mei quis
mihi

meae consumptis carnibus adhesit os meum et derelicta sunt
tantummodo labia circa dentes meos; miseremini mei et mei
mei mei mei mei mei et mei et mei et estis mei mei estis estis
estis estis estis estis estis estis estis mei mei estis et estis

catullus a velte sic ipse flagitabam: "camerium mihi, pessimae puel-
lae!" quaedam inquit nudum + reduc + "en hic in roseis latet
papillis." sed te iam ferre herculi labos est: tanto ten fastu
negas, amice? dic nobis ubi sis futurus, ede audacter, com-
mitte, crede luci. nunc te

a velte sic ipse flagitabam: "camerium mihi, pessimae puel-
lae!" quaedam inquit nudum + reduc + , , , , , , , , , , , , , , , ,
, et et et et et et et et et et et et et

ovid anxia furti, donec arestoridae servandam tradidit argo. cen-
tum luminibus cinctum caput argus habebat: inde suis vi-
cibus capiebant bina quietem, cetera servabant atque in sta-
tione manebant. constiterat quocumque modo, spectabat
ad io: ante oculos io, quamvis aversus, habebat. luce sinit
pasci; cum sol tellure sub alta

anxia furti, donec arestoridae servandam tradidit argo. cen-
tum luminibus cinctum caput argus habebat: inde suis . , , ,
, , , , , , , , , , , , , , , , , ne , , , , , , , ,

cicero primum audieris, ad me tarento advolaris, quae tua fuerit
adsessio, oratio, confirmatio animi mei fracti communium
miseriarum metu? tandem aliquando romae esse coepimus.
quid defuit nostrae familiaritati? in maximis rebus quonam
modo gererem me adversus caesarem usus tuo consilio sum,
in reliquis officio. cui tu

primum audieris, ad me tarento advolaris, quae tua fuerit
adsessio, oratio, confirmatio animi mei fracti , , , , tui fuit
tui tui , tui , tui , , , , , tui cognovi tui , cognovi , cognovi , ,
cognovi cognovi cognovi cognovi

ovid permulsit manibusque leves agitavit habenas, sublimis ra-
pitur subiectaque thessala tempe despicit et threces region-
ibus applicat angues: et quasque ossa tulit quasque altus
pelion herbas othrysque pindusque et pindo maior olympus
perspicit, et placitas partim radice revellit, partim succidit
curvamine falcis aenae. multa quoque apidani placuerunt

permulsit manibusque leves agitavit habenas, sublimis ra-
pitur subiectaque thessala tempe despicit et threces region-
ibus applicat ,
,

ovid quoque moverat omnes, sic omnes, ut et ipsa iovis coni-
unxque sororque eventus hecubam meruisse negaverit illos.
non vacat aurorae, quamquam isdem faverat armis, cladibus
et casu troiaeque hecubaeque moveri. cura deam pro-
prior luctusque domesticus angit memnonis amissi, phrygiis
quem lutea campis vidit achillea pereuntem cuspide

quoque moverat omnes, sic omnes, ut et ipsa iovis coni-
unxque sororque eventus hecubam meruisse negaverit . . , ,
, ,

vergil amor, haec patria est. si te karthaginis arces, phoenis-
sam, libycaeque aspectus detinet urbis, quae tandem, au-
sonia teucros considere terra, invidia est? et nos fas extera
quaerere regna. me patris anchisae, quotiens umentibus um-
bris nox operit terras, quotiens astra ignea surgunt, admonet
in somnis et turbida

amor, haec patria est. si te karthaginis arces, phoenissam,
libycaeque aspectus detinet urbis, quae tandem, . , . , , , , , ,
, ,

Table C.2: Totality of LatinBERT initial generation with the last fourteen context words pro-
vided

	Introduction
	Motivation
	Objectives

	Background and Related Work
	Problem Domain
	Lingua Latina
	Latin Grammar
	Style in Latin
	Latin Composition

	Related Work
	Background
	Transformers
	BERT
	Latin BERT

	Large Language Models
	GPT-3
	LLaMA

	Prior Work: Latin Authorship
	The Dataset
	Results

	Design & Methodology
	Requirements
	Functional Requirements
	Nonfunctional Requirements
	Code Quality

	Design Prerequisites
	Dataset
	Author Selection

	Latin BERT
	Transformer
	ChatGPT
	LLaMA
	Alpaca
	LoRA
	Alpaca with LoRA
	Approach for Latin

	Implementation
	Development
	Language & Libraries
	Cloud Computing

	Data
	Models
	LatinBERT
	Transformers
	ChatGPT
	LLaMA
	Weights
	Latin Approach Inspired by Alpaca LoRA

	Evaluation
	Experimental Design
	Survey Results

	Discussion, Conclusion, and Future Work
	Discussion
	Future Work
	Conclusion

	User Manual
	Requirements
	Create Environment and Install Dependencies
	Running the Project

	Maintenance Manual
	Setting-up the Development Environment
	Requirements
	Running the Project

	Summary of Files
	Direction for Improvement

	Generated Output
	Survey Text Generated
	LatinBERT Initial Analysis

