
University of Aberdeen
Department of Mathematics

MA2508 Linear Algebra
The Unreasonable Effectiveness of Spectral Clustering

Living in an increasingly data-driven world, it is imperative to have an understand-
ing of how data is being used. One common way to represent data is through a structure
called a Graph. A Graph is comprised of vertices, commonly known as points or nodes, and
edges, the lines that connect the vertices, which makes this structure ideal for modelling
relationships in data. The quintessential use-case example of a Graph is to model the re-
lationship between friends and friend groups, where each vertex is a person and if an edge
exists between two vertices they are friends. There can also be numerical values associated
with the vertices and edges. Every vertex has a degree, which is the number of edges that are
connected to it, and both vertices and edges can have a weight, which will typically indicate
something about the relationship (often strength). One way of extrapolating meaning from
data is through clustering. The two most utilised clustering methods are K-Means Clustering
and Spectral Clustering. K-Means Clustering attempts to identify (k) cluster centers, also
known as centroids, and then the proximity to these centers determines to which cluster a
point belongs, whereas Spectral Clustering accounts more for the underlying geometry [7]
through use of the Laplacian Matrix and its eigenvalues & eigenvectors.

But what is the Laplacian Matrix? It is easiest to understand the Laplacian Matrix
from the context of a simple unweighted & undirected Graph, and it is defined as the difference
between the diagonal Degree Matrix and the Adjacency Matrix of this Graph (L = D - A1).
The diagonal Degree Matrix is a Matrix, whose diagonal entries (Di,i) are the number of
edges connected to the vertex i and all other entries in the Matrix are equal to 0, whereas the
Adjacency Matrix is a Matrix that at row i and column j has a value of 1 if there exists an
edge between vertex i and vertex j (otherwise the value of Ai,j is 0)[6]. Consequently, with the
Laplacian Matrix being the difference of these two, each row of the Laplacian Matrix will sum
to 0 (since the degree of a node is equivalent to the number of edges). Whilst this is somewhat
interesting in and of itself, the crux of Spectral Clustering and the importance of using the
Laplacian Matrix rests on its eigenvalues and eigenvectors2 (where there exists an ordering
such that λ0 ≤ λ1.... ≤ λn). It is actually on account of each row summing to 0 that there
exists a trivial eigenvalue and eigenvector: λ0 = 0 and v = < 1, 1, ....1 >[5, 6]. Moreover, the
algebraic multiplicity of λ = 0, that is the number of times 0 is a root of the characteristic
polynomial, is equivalent to the number of connected components[6]. In Godsil’s Algebraic
Graph Theory, he states “Let X be a graph with n vertices and c connected components. If
Q is the Laplacian of X, then rk Q = n - c”[4], which bears some resemblance to the Rank-
Nullity Theorem (i.e. the Rank + the Nullity = n, n number of columns). If one rewrote it
to explicitly resemble the Rank-Nullity Theorem, the relation becomes even clearer : rk Q +
c = n, so c, the number of connected components, directly equals the Nullity (the dimension
of the Kernel) and, as “the 0-eigenspace of L is exactly the kernel of L” [1], it is then clear
why the algebraic multiplicity of λ = 0 for the Laplacian Matrix is equivalent to the number
of connected components. Intuitively, then, the trivial λ0 = 0 makes sense, as there must
exist at least one connected component, and, if the Graph is connected, then λ1 > 0 and the
larger λ1 is the greater the algebraic connectivity is of the Graph[6, 5, 3]. But, if there are m

1In the case of a Weighted Graph, this is will be written as L = D - W
2In fact the term Spectral, in Spectral Clustering, references the Spectrum (i.e. the set of eigenvalues) of

the the Laplacian Matrix.
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connected components, then the ordering of eigenvalues will be λ0 = λ1 = ... = λm < λm+1,
and this λm+1, the first non-zero eigenvalue, also plays a role, and it is known as the spectral
gap[6]. The spectral gap is useful in determining how easy it is to separate the graph, and
this is seen from the Cheeger Inequality. The Cheeger constant, hG, is a number showing
how efficient of a separation exists within a graph where efficiency is expressed as the ratio
of the number of edges that must be cut divided by the minimum of the remaining distinct
parts of the Graph (and the minimum of this ratio of all the subsets of the Graph is the
Cheeger constant for the Graph), which incentives larger distinct parts to remain[9, 2]. The
Cheeger Inequality then directly relates to the spectral gap of the Laplacian Matrix as follows
h2
G
2 ≤ λm+1 ≤ 2hG, and, as the aim of clustering is to distinguish parts of the Graph, the

Cheeger inequality provides bounds on how easily this can be done[9, 2].

Having established what the Laplacian Matrix of a Graph is and the implications
of its eigenvalues & eigenvectors, the Spectral Clustering algorithm can now be understood
with ease. The first step of the algorithm is done by computing the Laplacian of the Graph,
as seen above3[6]. In order to determine k clusters, one then calculates the eigenvectors,
ordered such that 0 = λ0 ≤ λ1 ≤ ...λn, and the first k are selected to be formed into a new
Matrix where each column is one of the k eigenvectors of length n, each row now represents
a vertex[6]. This effectively acts as dimension reduction for the data from Rn → Rk[7]; this
Matrix is a Laplacian Eigenmap[7, 10]. Lastly, this new Matrix is provided as input for
a clustering algorithm on the rows of the Matrix, such as K-Means clustering, which then
results with the desired Spectral Clustering[7, 3, 11, 8].

But, why would one go through the additional steps if the end result still relies on
K-Means Clustering? This is a valid critique of Spectral Clustering. The issue with K-Means
Clustering is that the initial centroids (the cluster centers) are randomly initialised and then
updated, so there is still a level of randomness and consequently varying degrees of success
in its clustering [3]. That being said, through use of the nonlinear Laplacian Eigenmap,
Spectral Clustering, unlike K-Means Clustering by itself, can “capute ‘the geometry of data’
and the local structure”[7, pg. 3]. Its main other critique is that, since it requires computing
eigenvalues and eigenvectors, for large datasets it can be very slow [3].

Ultimately, as the world becomes further data-driven, Spectral Clustering should
be in the arsenal of any competent Data Scientist for its ease of implementation and for the
potential advantages over other prevailing clustering algorithms dependent on the data at
hand.

3for k clusters, however, the Laplacian matrix must be normalised, so instead of L = D - A, as see above,

it would be L = I-D− 1
2 ·A·D− 1

2 [6].
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